史上最全学习率调整策略lr_scheduler

学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力。所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法。

import torch
import numpy as np
from torch.optim import SGD
from torch.optim import lr_scheduler
from torch.nn.parameter import Parameter

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, lr=0.1)

以上是一段通用代码,这里将基础学习率设置为0.1。接下来仅仅展示学习率调节器的代码,以及对应的学习率曲线。

1. StepLR

这是最简单常用的学习率调整方法,每过step_size轮,将此前的学习率乘以gamma。

scheduler=lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

在这里插入图片描述

2. MultiStepLR

MultiStepLR同样也是一个非常常见的学习率调整策略,它会在每个milestone时,将此前学习率乘以gamma。

scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[30,80], gamma=0.5)

在这里插入图片描述

3. ExponentialLR

ExponentialLR是指数型下降的学习率调节器,每一轮会将学习率乘以gamma,所以这里千万注意gamma不要设置的太小,不然几轮之后学习率就会降到0。

scheduler=lr_scheduler.ExponentialLR(optimizer, gamma=0.9) 

在这里插入图片描述

4. LinearLR

LinearLR是线性学习率,给定起始factor和最终的factor,LinearLR会在中间阶段做线性插值,比如学习率为0.1,起始factor为1,最终的factor为0.1,那么第0次迭代,学习率将为0.1,最终轮学习率为0.01。下面设置的总轮数total_iters为80,所以超过80时,学习率恒为0.01。

scheduler=lr_scheduler.LinearLR(optimizer,start_factor=1,end_factor=0.1,total_iters=80)

在这里插入图片描述

5. CyclicLR

scheduler=lr_scheduler.CyclicLR(optimizer,base_lr
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值