图像缩放之双三次插值法


http://blog.csdn.net/qq_29058565/article/details/52769497

今天学习了第三种图像缩放的方法,双三次插值法。由于理解能力比较差,看了好久的公式,还是云里雾里,但是为了督促自己学习,还是把已知的部分记录下来。

数学原理

维基百科的解释

假设源图像A大小为m*n,缩放后的目标图像B的大小为M*N。那么根据比例我们可以得到B(X,Y)在A上的的 
对应坐标为A(x,y)=A(X*(m/M),Y*(n/N))。在双线性插值法中,我们选取A(x,y)的最近四个点。而在双立方 
插值法中,我们选取的是最近的16个像素点作为计算目标图像B(X,Y)处像素值的参数。如图所示:

双立方插值说明图

如图所示P点就是目标图像B在(X,Y)处对应于源图像中的位置,P的坐标位置会出现小数部分,所以我们假设 
P的坐标为P(x+u,y+v),其中x,y分别表示整数部分,u,v分别表示小数部分。那么我们就可以得到如图所示的 
最近16个像素的位置,在这里用a(i,j)(i,j=0,1,2,3)来表示。 
双立方插值的目的就是通过找到一种关系,或者说系数,可以把这16个像素对于P处像素值得影响因子找出 
来,从而根据这个影响因子来获得目标图像对应点的像素值,达到图像缩放的目的。 
我在这次的学习中学习的是基于BiCubic基函数的双三次插值法,BiCubic基函数形式如下:

这里写图片描述

参考这里的博客

我们要做的就是求出BiCubic函数中的参数x,从而获得上面所说的16个像素所对应的系数。在学习双线性插 
值法的时候,我们是把图像的行和列分开来理解的,那么在这里,我们也用这种方法描述如何求出a(i,j)对应 
的系数k_ij。假设行系数为k_i,列系数为k_j。我们以a00位置为例: 
首先,我们要求出当前像素与P点的位置,比如a00距离P(x+u,y+v)的距离为(1+u,1+v)。 
那么我们可以得到:k_i_0=W(1+u),k_j_0=W(1+v). 
同理我们可以得到所有行和列对应的系数:

k_i_0=W(1+u), k_i_1=W(u), k__i_2=W(1-u), k_i_3=W(2-u); 
k_j_0=W(1+v), k_j_1=W(v), k_j_2=W(1-v), k_j_3=W(2-v);

这样我们就分别得到了行和列方向上的系数。 
k_i_j=k_i*k_j我们就可以得到每个像素a(i,j)对应的权值了。

最后通过求和公式可以得到目标图片B(X,Y)对应的像素值: 
pixelB(X,Y)=pixelA(0,0)*k_0_0+pixelA(0,1)*k_0_1+…+pixelA(3,3)*k_3_3; 
这里其实就是个求和公式,由于不知道怎么编辑公式,就这样表达了。

程序实现

/**********************10-9*******************************
功能:双三次插值缩放图片
数学原理:假设原图像A的大小为m*n,新图像B的大小为M*N
如果我们要求B(X,Y)处的像素值:
我们首先可以得到B(X,Y)在图像A中对应的位置(x,y)=(X*(m/M),Y*(N/n))
这个时候求得的x,y是小数值,我们可以通过这个小数值坐标找到距离最近的16个像素点,
利用所选择的基函数,求出对应的每个像素的权值,最终获得pixelB(X,Y)
**********************************************************/

#include <opencv2\opencv.hpp>
#include <iostream>
#include <math.h>
using namespace std;
using namespace cv;

float a = -0.5;//BiCubic基函数
void getW_x(float w_x[4], float x);
void getW_y(float w_y[4], float y);

int main(){
    Mat image = imread("lena.jpg");//源图像

    float Row_B = image.rows*2;
    float Col_B = image.cols*2;


    Mat biggerImage(Row_B, Col_B, CV_8UC3);

    for (int i = 2; i < Row_B-4; i++){
        for (int j = 2; j < Col_B-4; j++){
            float x = i*(image.rows / Row_B);//放大后的图像的像素位置相对于源图像的位置
            float y = j*(image.cols / Col_B);

            /*if (int(x) > 0 && int(x) < image.rows - 2 && int(y)>0 && int(y) < image.cols - 2){*/
                float w_x[4], w_y[4];//行列方向的加权系数
                getW_x(w_x, x);
                getW_y(w_y, y);

                Vec3f temp = { 0, 0, 0 };
                for (int s = 0; s <= 3; s++){
                    for (int t = 0; t <= 3; t++){
                        temp = temp + (Vec3f)(image.at<Vec3b>(int(x) + s - 1, int(y) + t - 1))*w_x[s] * w_y[t];
                    }
                }

                biggerImage.at<Vec3b>(i, j) = (Vec3b)temp;
            }
        }

    imshow("image", image);
    imshow("biggerImage", biggerImage);
    waitKey(0);

    return 0;
}
/*计算系数*/
void getW_x(float w_x[4],float x){
    int X = (int)x;//取整数部分
    float stemp_x[4];
    stemp_x[0] = 1 + (x - X);
    stemp_x[1] = x - X;
    stemp_x[2] = 1 - (x - X);
    stemp_x[3] = 2 - (x - X);

    w_x[0] = a*abs(stemp_x[0] * stemp_x[0] * stemp_x[0]) - 5 * a*stemp_x[0] * stemp_x[0] + 8 * a*abs(stemp_x[0]) - 4 * a;
    w_x[1] = (a + 2)*abs(stemp_x[1] * stemp_x[1] * stemp_x[1]) - (a + 3)*stemp_x[1] * stemp_x[1] + 1;
    w_x[2] = (a + 2)*abs(stemp_x[2] * stemp_x[2] * stemp_x[2]) - (a + 3)*stemp_x[2] * stemp_x[2] + 1;
    w_x[3] = a*abs(stemp_x[3] * stemp_x[3] * stemp_x[3]) - 5 * a*stemp_x[3] * stemp_x[3] + 8 * a*abs(stemp_x[3]) - 4 * a;
}
void getW_y(float w_y[4], float y){
    int Y = (int)y;
    float stemp_y[4];
    stemp_y[0] = 1.0 + (y - Y);
    stemp_y[1] = y - Y;
    stemp_y[2] = 1 - (y - Y);
    stemp_y[3] = 2 - (y - Y);

    w_y[0] = a*abs(stemp_y[0] * stemp_y[0] * stemp_y[0]) - 5 * a*stemp_y[0] * stemp_y[0] + 8 * a*abs(stemp_y[0]) - 4 * a;
    w_y[1] = (a + 2)*abs(stemp_y[1] * stemp_y[1] * stemp_y[1]) - (a + 3)*stemp_y[1] * stemp_y[1] + 1;
    w_y[2] = (a + 2)*abs(stemp_y[2] * stemp_y[2] * stemp_y[2]) - (a + 3)*stemp_y[2] * stemp_y[2] + 1;
    w_y[3] = a*abs(stemp_y[3] * stemp_y[3] * stemp_y[3]) - 5 * a*stemp_y[3] * stemp_y[3] + 8 * a*abs(stemp_y[3]) - 4 * a;
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82

注:由于作者编程能力有限,希望有人能指正一下怎么优化这里的程序,这个程序只是实现了算法,运行 
速度慢的要死不能忍受!

效果展示

源图像

放大两倍的图像


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值