摘要: 针对传统教与学算法存在易陷入局部最优、收敛速度慢和求解精度低等问题,提出一种融合经验反思机制的教与学优化算法(empirical reflection teaching learning based optimization, ERTLBO)。首先在教学阶段引入经验反思机制,遴选精英个体引导普通个体向教师靠近,提高班级整体水平,从而提高算法全局探索能力。其次在学习阶段引入动态自适应权重,能够根据学生的适应度值对位置进行自适应扰动,进而实现个体位置的动态更新,提高算法跳出局部最优的能力。仿真实验选取23个基准测试函数对ERTLBO同其他变体和流行算法进行性能测试。实验结果表明,ERTLBO算法具有更好的寻优性能和求解稳定性。最后,通过2个工程设计问题进一步验证ERTLBO解决实际问题的有效性和优越性。
- 关键词:
- 教与学优化算法 /
- 经验反思机制 /
- 动态自适应权重 /
- 元启发式算法 /
- 基准函数 /
- 压力容器设计问题 /
- 焊接梁设计问题 /
- Wilcoxon秩和检验
近年来不同学科和工程领域中的优化问题日益复杂与多样化,诸如牛顿法、梯度下降法和共轭梯度法等传统优化方法已经不能满足实际需求。因此,许多研究者受自然启发&#