融合经验反思机制的教与学优化算法

针对教与学优化算法存在的局限,本文提出融合经验反思机制的教与学优化算法(ERTLBO)。在教学阶段,引入经验反思策略,根据学生学习情况调整教学模式,提升班级整体水平。学习阶段采用动态自适应权重,根据个体适应度值进行位置更新,提高算法跳出局部最优的能力。实验结果表明,ERTLBO算法在收敛精度和速度上优于其他优化算法,适用于解决实际工程问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要: 针对传统教与学算法存在易陷入局部最优、收敛速度慢和求解精度低等问题,提出一种融合经验反思机制的教与学优化算法(empirical reflection teaching learning based optimization, ERTLBO)。首先在教学阶段引入经验反思机制,遴选精英个体引导普通个体向教师靠近,提高班级整体水平,从而提高算法全局探索能力。其次在学习阶段引入动态自适应权重,能够根据学生的适应度值对位置进行自适应扰动,进而实现个体位置的动态更新,提高算法跳出局部最优的能力。仿真实验选取23个基准测试函数对ERTLBO同其他变体和流行算法进行性能测试。实验结果表明,ERTLBO算法具有更好的寻优性能和求解稳定性。最后,通过2个工程设计问题进一步验证ERTLBO解决实际问题的有效性和优越性。

  • 关键词: 
  • 教与学优化算法  /  
  • 经验反思机制  /  
  • 动态自适应权重  /  
  • 元启发式算法  /  
  • 基准函数  /  
  • 压力容器设计问题  /  
  • 焊接梁设计问题  /  
  • Wilcoxon秩和检验  

近年来不同学科和工程领域中的优化问题日益复杂与多样化,诸如牛顿法、梯度下降法和共轭梯度法等传统优化方法已经不能满足实际需求。因此,许多研究者受自然启发&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗思付之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值