004_LeetCode_4 Median of Two Sorted Arrays 题解

Description

There are two sorted arrays nums1 and nums2 of size m and n respectively.


Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).


Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

解:

假设nums1的长度小于nums2的长度:

  • inums1划分为两部分nums1_lnums1_r,同时有 r=m+n+12 nums2划分为两部分nums2_lnums2_r

  • 划分之后,将两个数组对应的左右部分分别对应,如下表:


leftright
nums1_1nums1_r
nums2_lnums2_r

当满足以下两个条件时:

  • i+j=mi+nj
  • nums2[j1]nums1[i] and nums1[i1]nums2[j]

可以得到中值:


  • m+n 为奇数,中值为: max(nums1[i1],nums2[j1])
  • 否则,中值为: max(nums1[i1],nums2[j1])+min(nums1[i],nums2[j])2

Java代码:


class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int m = nums1.length, n = nums2.length;
        // 确保n大于m
        if (m > n) {
            int[] temp = nums1; nums1 = nums2; nums2 = temp;
            int tmp = m; m = n; n = tmp;
        }

        int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = halfLen - i;
            if (i < iMax && nums2[j-1] > nums1[i]){
                // i的值太小
                iMin = iMin + 1;
            }
            else if (i > iMin && nums1[i-1] > nums2[j]) {
                // i的值太大
                iMax = iMax - 1;
            }
            else {
                int maxLeft = 0;
                // 计算左半部分的最大值
                if (i == 0) { maxLeft = nums2[j-1]; }
                else if (j == 0) { maxLeft = nums1[i-1]; }
                else { maxLeft = Math.max(nums1[i-1], nums2[j-1]); }
                // 两个数组的长度之和为奇数时,中值为长度的中间值
                if ( (m + n) % 2 == 1 ) { return maxLeft; }
                // 当两个数组的长度之和为偶数时, 中值等于左半部分的最大值与右半部分的最小值的均值
                int minRight = 0;
                if (i == m) { minRight = nums2[j]; }
                else if (j == n) { minRight = nums1[i]; }
                else { minRight = Math.min(nums2[j], nums1[i]); }

                return (maxLeft + minRight) / 2.0;
            }
        }
        return 0.0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值