- 线性模型
- 指数族分布
- 伯努利分布
- 线性回归与广义线性模型
- 线性回归
- 广义线性模型
- logistic回归(对数几率回归)
- logistic回归添加L1正则、L2正则以及同时添加L1、L2正则
- 线性判别分析 (LDA)
- 多分类学习
- 类别不平衡问题
线性模型
指数族分布
指数族分布指一类分布,其概率密度函数都可以写成如下形式:
p ( y ; η ) = b ( y ) e x p ( η T T ( y ) − a ( η ) ) p(y;\eta)=b(y)exp(\eta^{T}T(y)-a(\eta)) p(y;η)=b(y)exp(ηTT(y)−a(η))
其中:
- η \eta η为自然参数。对于线性回归和logistic回归, η \eta η是一个实数,且假设 η = w ⋅ x \eta=w \cdot x η=w⋅x; 对于softmax回归, η \eta η是一个向量,且假设 η i = w i ⋅ x \eta^{i}=w_i \cdot x ηi=wi⋅x
- T(y)是充分统计量,对于线性回归和logistic回归,有T(y)=y;对于k个类的softmax回归, T ( y ) = ( 1 y = 1 , 1 y = 2 , . . . , 1 y = k − 1 ) T T(y)=(1{y=1},1{y=2},...,1{y=k-1})^T T(y)=(1y=1,1y=2,...,1y=k−1)T
- a ( η ) a(\eta) a(η)是一个对数配分函数, e − a ( η ) e^{-a(\eta)} e−a(η)在式子中起到归一化的作用,保证概率密度函数在随机变量y上的积分为1,
一旦T、a、b确定,就可以确定一种分布, η \eta η为参数。
伯努利分布
伯努利分布 B ( ϕ ) B(\phi) B(ϕ)的分布列为:
p ( y ; ϕ ) = ϕ y ( 1 − ϕ ) 1 − y = e x p ( y l o g ϕ + ( 1 − y ) l o g ( 1 − ϕ ) ) = e x p ( l o g ( ϕ 1 − ϕ ) y + l o g ( 1 − ϕ ) ) p(y;\phi) =\phi^y(1-\phi)^{1-y} \\ = exp(ylog\phi + (1-y)log(1-\phi)) \\ = exp(log(\frac{\phi}{1-\phi})y+log(1-\phi)) \\ p(y;ϕ)=ϕy(1−ϕ)1−y=exp(ylogϕ+(1−y)log(1−ϕ))=exp(log(1−ϕϕ)y+log(1−ϕ))
由此可得
b ( y ) = 1 η = l o g ( ϕ 1 − ϕ )    ⟹    ϕ = 1 1 + e − η T ( y ) = y a ( η ) = − l o g ( 1 − ϕ ) = l o g ( 1 + e η ) b(y) = 1 \\ \eta = log(\frac{\phi}{1-\phi}) \implies \phi=\frac{1}{1+e^{-\eta}} \\ T(y) = y \\ a(\eta) = -log(1-\phi) = log(1+e^{\eta}) b(y)=1η=log(1−ϕϕ)⟹ϕ=1+e−η1T(y)=ya(η)=−log(1−ϕ)=log(1+eη)
线性回归与广义线性模型
给定d个属性 x = ( x 1 ; x 2 ; . . . ; x d ) x=(x_1;x_2;...;x_d) x=(x1;x2;...;xd),线性模型试图学得一个通过属性的线性组合来进行预测的函数,即
f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d + b f(x)=w_1x_1+w_2x_2+...+w_dx_d+b f(x)=w1x1+w2x2+...+wdxd+b
一般用向量形式写成
f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx