指数族分布、广义线性模型、线性回归、logistic回归

本文深入探讨了线性模型中的核心概念,包括指数族分布、线性回归、广义线性模型和logistic回归。详细解释了指数族分布的结构,伯努利分布的特性,以及如何通过线性回归和广义线性模型进行预测。特别关注了logistic回归,讨论了其作为对数几率回归的性质,以及在添加正则化项后的应用。文章还提及了线性判别分析和多分类学习的基本思路。
摘要由CSDN通过智能技术生成

线性模型

指数族分布

指数族分布指一类分布,其概率密度函数都可以写成如下形式:
p ( y ; η ) = b ( y ) e x p ( η T T ( y ) − a ( η ) ) p(y;\eta)=b(y)exp(\eta^{T}T(y)-a(\eta)) p(y;η)=b(y)exp(ηTT(y)a(η))
其中:

  • η \eta η为自然参数。对于线性回归和logistic回归, η \eta η是一个实数,且假设 η = w ⋅ x \eta=w \cdot x η=wx; 对于softmax回归, η \eta η是一个向量,且假设 η i = w i ⋅ x \eta^{i}=w_i \cdot x ηi=wix
  • T(y)是充分统计量,对于线性回归和logistic回归,有T(y)=y;对于k个类的softmax回归, T ( y ) = ( 1 y = 1 , 1 y = 2 , . . . , 1 y = k − 1 ) T T(y)=(1{y=1},1{y=2},...,1{y=k-1})^T T(y)=(1y=1,1y=2,...,1y=k1)T
  • a ( η ) a(\eta) a(η)是一个对数配分函数, e − a ( η ) e^{-a(\eta)} ea(η)在式子中起到归一化的作用,保证概率密度函数在随机变量y上的积分为1,
    一旦T、a、b确定,就可以确定一种分布, η \eta η为参数。
伯努利分布

伯努利分布 B ( ϕ ) B(\phi) B(ϕ)的分布列为:
p ( y ; ϕ ) = ϕ y ( 1 − ϕ ) 1 − y = e x p ( y l o g ϕ + ( 1 − y ) l o g ( 1 − ϕ ) ) = e x p ( l o g ( ϕ 1 − ϕ ) y + l o g ( 1 − ϕ ) ) p(y;\phi) =\phi^y(1-\phi)^{1-y} \\ = exp(ylog\phi + (1-y)log(1-\phi)) \\ = exp(log(\frac{\phi}{1-\phi})y+log(1-\phi)) \\ p(y;ϕ)=ϕy(1ϕ)1y=exp(ylogϕ+(1y)log(1ϕ))=exp(log(1ϕϕ)y+log(1ϕ))

由此可得
b ( y ) = 1 η = l o g ( ϕ 1 − ϕ )    ⟹    ϕ = 1 1 + e − η T ( y ) = y a ( η ) = − l o g ( 1 − ϕ ) = l o g ( 1 + e η ) b(y) = 1 \\ \eta = log(\frac{\phi}{1-\phi}) \implies \phi=\frac{1}{1+e^{-\eta}} \\ T(y) = y \\ a(\eta) = -log(1-\phi) = log(1+e^{\eta}) b(y)=1η=log(1ϕϕ)ϕ=1+eη1T(y)=ya(η)=log(1ϕ)=log(1+eη)

线性回归与广义线性模型

给定d个属性 x = ( x 1 ; x 2 ; . . . ; x d ) x=(x_1;x_2;...;x_d) x=(x1;x2;...;xd),线性模型试图学得一个通过属性的线性组合来进行预测的函数,即
f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d + b f(x)=w_1x_1+w_2x_2+...+w_dx_d+b f(x)=w1x1+w2x2+...+wdxd+b
一般用向量形式写成
f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值