1. 神经网络
1.1. 神经元模型
神经元接受到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”处理以产生神经元的输出。理想的激活函数是阶跃函数,将输入值映射到输出值0或1。但是阶跃函数有不连续、不光滑等不好的性质,因此实际常用sigmoid函数作为激活函数。 把许多神经元按一定的层次结构连接起来就得到了神经网络。
y = f ( ∑ i = 1 n w i x i − θ ) y=f(\sum_{i=1}^{n}w_ix_i-\theta) y=f(i=1∑nwixi−θ)
1.2. 感知机与多层网络
感知机有两层神经元组成。输入层接收外界输入信号后传递给输出层,输出层为M-P神经元,亦称“阈值逻辑单元”。通过将阈值 θ \theta θ看做一个固定输入为-1.0的哑结点所对应的连接权重 w n + 1 w_{n+1} wn+1,这样权重和阈值的学习可统一为权重的学习。
感知机的学习:对训练样例(x,y),若当前感知机的输出为 y ^ \hat{y} y^,则感知机权重将这样调整:
w i ← w i + Δ w i Δ w i = η ( y − y ^ ) x i w_i \leftarrow w_i + \Delta w_i \\ \Delta w_i = \eta (y-\hat{y})x_i wi←wi+ΔwiΔwi=η(y−y^)xi
其中, η \eta η为学习率,在0和1之间。
感知机只有输出层神经元进行激活函数处理,即只拥有一层功能神经元。
更一般的,常见的神经网络包含多层层级结构,每层神经元与下一层神经元全互连,神经元之间不存在同层连接,也不存在跨层连接,称为“多层前馈神经网络”。
1.3. 误差逆传播算法(BP算法)
BP网络一般指BP算法训练的多层前馈神经网络。
BP算法:
给定训练集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } , x i ∈ R d , y i ∈ R l D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}^l D={ (x1,y1),(x2,y2),...,(xm,ym)},xi∈Rd,yi∈Rl,即输入示例由d个属性描述,输出l维实值向量。下图给出一个拥有d个输入神经元,l个输出神经元,q个隐层神经元的多层前馈神经网络
其中输出层第j个神经元的阈值用 θ j \theta_j θj表示,隐层第h个神经元的阈值用 γ h \gamma_h γh表示。输入层的第i个神经元与隐层第h个神经元之间的连接权为 v i h v_{ih} vih,隐层第h个神经元与输出层第j个神经元之间的连接权为 w h j w_{hj}