【动态规划】题目1:跳台阶

题目1:跳台阶

一个楼梯共有 n 级台阶,每次可以走一级或者两级,问从第 0
级台阶走到第 n 级台阶一共有多少种方案。

输入格式
共一行,包含一个整数 n。

输出格式
共一行,包含一个整数,表示方案数。

数据范围
1 ≤ n ≤ 15 1 \le n \le 15 1n15

解题思路

1.递归

input:5
由于一次只能走一级或两级台阶,因此5级台阶的走法分为:走3级台阶再走一次(2级)、4级台阶再走一次(1级)。即5级台阶的走法等于3级台阶走法和4级台阶走法之和。以此类推,可以画出dfs树:
在这里插入图片描述
叶子结点只存在两种情况
1:只能走1步 → \rightarrow 1种情况
2:一次走2步or走两个1步 → \rightarrow 2种情况

代码实现

#include <iostream>
using namespace std;

int dfs(int x)
{
   
    if (x == 1)return 1;
    if (x == 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值