损失函数与优化器
在机器学习中,优化器是用于更新和优化模型参数(如神经网络中的权重和偏置)的算法,即根据损失函数的梯度信息,指导模型参数的更新,使其逐步逼近最佳状态,从而达到更高的预测准确性或泛化能力。
- 损失函数(例如均方误差、交叉熵等)用于衡量模型预测结果与实际值之间的差异。
- 优化器的任务是通过不断调整模型参数,使损失函数的值逐渐降低,达到最小化的效果。
1. 优化器的工作原理
优化器**通常基于梯度下降(Gradient Descent)**或其变体来更新模型参数。核心思路是:
- 计算损失函数相对于模型参数的梯度:这反映了模型参数如何影响损失值。
- 更新参数:沿着梯度的反方向调整参数,使损失函数的值逐渐减小。
梯度下降的数学公式:
θ = θ − α ⋅ ∇ θ J ( θ ) \theta = \theta - \alpha \cdot \nabla_\theta J(\theta) θ=θ−α⋅∇θJ(θ)
其中:
- θ \theta θ 是模型参数,
- α \alpha α 是学习率(即每次更新的步长),
- ∇ θ J ( θ ) \nabla_\theta J(\theta) ∇θ

最低0.47元/天 解锁文章
6588

被折叠的 条评论
为什么被折叠?



