【大作业-19】设备漏油检测模型,YOLOv5/v8/11/12+PyQt+MySQL

YOLO+PyQt+MySQL,设备漏油检测模型

目录

1. 前言

2. 项目展示

2.1 五次对比试验

2.2 登录界面

2.3 检测界面

2.4 训练结果部分展示

2.5 资源获取

3. 代码运行

3.1 数据集

3.2 python环境配置

3.3 mysql数据库

1. 前言

大家好,这里是宋大水,今天给大家分享的是设备漏油检测模型,主要用到的技术包括YOLO目标检测模型、MySQL数据库和PyQt的检测界面。工作量有登录、注册、图片检测、视频检测和摄像头流的检测,五次对比试验(YOLOv5s,YOLOv8s,YOLO11s,YOLO12s和基于transformer的RT-DETR)。

2. 项目展示

2.1 五次对比试验

仅展示部分数据,文档中包含所有数据

PRmAPmAP50-95参数量(M)GFLOPsFPS(4060TI)
YOLOv5s23.8112.6
YOLOv8s0.9150.8450.880.5921.428.4124.2
YOLO11s21.3123.6
YOLO12s21.2102.6
RT-DETR0.820.7750.8010.54963.1103.554.5

选择了目前主流的v5,v8,11,12和RT-DERT这五个模型进行训练,从表中可以看出RT-DERT它的FPS的数值很低,所以如果想要一个在精度和推理速度相平衡的模型来说,YOLO系列检测模型无疑还是比较好的选择,在YOLO系列的这四个模型中,YOLO11s的检测性能相对来说是最好的。

2.2 登录界面

这个界面由PyQt设计,具备两个功能,一个是登录功能,一个是注册功能,使用了MySQL数据库,因此我们在登录前首先要配置好数据库,才可以进行注册和登录,登录进去后进行目标检测功能。

2.3 检测界面

这个检测界面也是由PyQt所设计的,所以可以选择四个检测模型pt文件,分别是v5,v8,11和12,选择需要检测的资源,例如图片,视频,摄像头和rtsp流,设置好置信度和IOU,选择是否要将检测结果保存到文件夹,然后点击下方的推理按钮即可开始推理检测。

2.4 训练结果部分展示

在这里展示一些重要的训练结果图片(F1曲线、P-R曲线、训练结果和训练图片)

2.5 资源获取

大家可以点击顶端的B站视频评论区置顶链接即可获取相关资源。

3. 代码运行

3.1 数据集

本实验数据集是一个设备漏油数据集,一个类别,部分图像如下图所示。

 data.yaml配置文件如下:

3.2 python环境配置

本代码运行需要安装一些深度学习包,例如PyTorch,Torchvision,opencv,ultralytics等。

深度学习环境的三种搭建方式(彻底理解安装逻辑和步骤)

大家可以看上面这个视频学习如何安装深度学习环境。

3.3 mysql数据库

因为登录和注册功能使用到了MySQL数据库,所以我们需要安装配置下这个数据库,只需用该文件中的安装包安装mysql8数据库,然后将下面这个sql语句导入到数据库中,并且配置下LoginWindows.py文件的数据库用户名和密码即可使用。

这就是本次给大家分享的目标检测项目,如需更加详细的信息,可以看置顶的B站视频,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值