1、首先介绍一下什么是贪心算法:
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。ps:不懂得话可以百度百科,仔细了解。
2、prim算法的原理:
从连通网N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,v),将其顶点加入到生成树的顶点
集合U中。以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u,v),把它的顶点
加入到集合U中。如此继续下去,直到网中的所有顶点都加入到生成树顶点集合U中为止。
3、
Prim算法
设G=(V,E)是连通带权图,V={1,2,…,n}。构造G的最小生成树的Prim算法的基本思想是:
(1)置S={1}
(2)只要S是V的真子集,就作如下的贪心选择
选取满足条件i ∈ S,j ∈ V-S,且c[i][j]最小的边,将顶点j添加到S中。
一直到S=V时为止。
(3)选取到的所有边恰好构成G的一棵最小生成树。
代码:
#include <iostream> #include <vector> #include <limits> using namespace std ; class TreeNode//定义一个最小生成树类 { public: int m_firstNode; int m_lastNode ; int m_Value ; TreeNode (int firstNode= 0, int lastNode = 0, int Value = 0) { m_firstNode=firstNode; m_lastNode =lastNode; m_Value =Value; } }; class Prim //定义一个Prim算法的类 { private: vector<vector<int> > m_nvvalues ; //无向连通图 vector<TreeNode> MinTree ; //最小生成树 int NodeCount; //无相连通图的结点数 public: Prim (const vector<vector<int> >& vnvalues) { m_nvvalues = vnvalues ; NodeCount = (int)m_nvvalues.size () ; } void DoPrim () { // 是否被访问标志 vector<bool> bFlag (NodeCount, false) ; bFlag[0]=true ; int firstNode ; int lastNode; int k=0 ; while(k<NodeCount-1) { //voctor<int>的最大值,也是默认值 int nMaxWeight=numeric_limits<int>::max () ; // 找到当前最短路径 int i = 0 ; while (i<NodeCount) { if(!bFlag[i]) { ++ i ; continue ; } for (int j = 0; j < NodeCount; ++ j) { if (!bFlag[j] && nMaxWeight > m_nvvalues[i][j]) { nMaxWeight = m_nvvalues[i][j] ; firstNode = i ; lastNode = j ; } } ++ i ; } bFlag[lastNode] = true ; MinTree.push_back (TreeNode(firstNode, lastNode, nMaxWeight)) ; ++k ; } // 输出结果 for (vector<TreeNode>::const_iterator ite = MinTree.begin() ; ite != MinTree.end() ; ++ ite ) { cout << (*ite).m_firstNode+1 << "->" << (*ite).m_lastNode+1<< " : " << (*ite).m_Value << endl ; } } } ; int main() { const int NodeCount=6 ;//定义结点个数 vector<vector<int> > values(NodeCount);//定义一个二维容器用来存储连通图 for(size_t i=0;i<values.size();++i)//重定义容器的大小 { values[i].resize(NodeCount,numeric_limits<int>::max()) ; } //将连通图中的权值赋值 values[0][1] = 6 ; values[0][2] = 1 ; values[0][3] = 5 ; values[1][0] = 6 ; values[1][2] = 5 ; values[1][4] = 3 ; values[2][0] = 1 ; values[2][1] = 5 ; values[2][3] = 5 ; values[2][4] = 6 ; values[2][5] = 4 ; values[3][0] = 5 ; values[3][2] = 5 ; values[3][5] = 2 ; values[4][1] = 3 ; values[4][2] = 6 ; values[4][5] = 6 ; values[5][2] = 4 ; values[5][3] = 2 ; values[5][4] = 6 ; //定义一个prim类的对象 Prim prim1(values) ; //使用prim类的DoPrim方法实现Prim算法 prim1.DoPrim () ; return 0 ; }