题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入输出格式
输入格式:
第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:
一行一个数字,表示到公司的最少秒数。
输入输出样例
输入样例#1:
4 4
1 1
1 2
2 3
3 4
输出样例#1:
1
说明
【样例解释】
1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。
【数据范围】
50%的数据满足最优解路径长度<=1000;
100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。
【分析】
倍增计算能到的点,然后把一步能到的点用邻接矩阵记录,边权1,然后跑Floyd。
因为点数比较少,可以用to[i][j][k]表示从i点出发走2^j能不能到k,就有点像邻接矩阵的思想。读入一条边的时候就to[u][0][v]=1;就行了
然后求倍增数组。求出来后再枚举点,建一个邻接矩阵的图,跑Floyd
【代码】
#include<iostream>
#include<cstdio>
#include<cstring>
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
bool can[55][55][55];
int dis[55][55];
int n,m;
int main()
{
int i,j,u,v,o,k;
memset(dis,127/3,sizeof dis);
scanf("%d%d",&n,&m);
fo(i,1,m)
{
scanf("%d%d",&u,&v);
can[u][0][v]=1;
dis[u][v]=1;
}
fo(o,1,50)
fo(i,1,50)
fo(j,1,50)
if(can[i][o-1][j])
fo(k,1,50)
if(can[j][o-1][k])
dis[i][k]=1,can[i][o][k]=1;
fo(k,1,n)
fo(i,1,n)
fo(j,1,n)
if(i!=j && j!=k && i!=k)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
printf("%d\n",dis[1][n]);
return 0;
}