题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4322
【题目大意】
给你N个糖果,M个小朋友,给你一个M*N的矩阵S,S[i][j]表示第i个小朋友拿到第j块糖产生的“喜好”x(x=0或1),如果喜好为1,那么如果分给这个小朋友这颗糖,那么他会得到K的高兴值,如果分给一个小朋友他不喜欢的糖,那么他会获得1高兴值。
给你M个数Bi,现询问能否找到一种分配方案使所有小朋友获得的高兴值不小于Bi。
【输入格式】
第一行为一个整数T,表示测试组数。
接下来T组数据,每一组第一行为三个整数N,M,K。
接下来一行为M个整数,表示Bi。
接下来是一个M*N的矩阵,含义见题目大意。
【输出格式】
对于每一组数据,如果可以使所有人的高兴值大于Bi,那么输出“Yes”,否则输出"No"。
【样例输入】
2
3 2 2
2 2
0 0 0
0 0 1
3 2 2
2 2
0 0 0
0 0 0
【样例输出】
Yes
No
【备注】
N,M<=13,K<=100
【题目分析】
感谢xly大佬的纠正(不然我有可能调一年啊,先是SPFA的vis没有清空,然后费用流忘写work数组,然后答案全输成大写。。。。。。完了我学的可能是假的费用流,xly大佬的博客:https://blog.csdn.net/weixin_42557561)
好了扯回来讲讲正解。一开始拿到这道题的时候,能看出来这是一个最大匹配的模型,但难就难在如何匹配。
首先肯定还是所有糖果向源点连一条容量为1的边,然后对于每个非喜爱糖果,那么他的贡献就只有1,我们当然希望每颗糖能够做出更多的贡献,所以我们可以暂时不考虑非喜爱糖果,最后剩下的糖果,肯定对于所有还没达到Bi的小朋友,没人喜欢,所以就一个一个的补,如果能补满,那么就可行,否则不行。
然后就考虑喜爱糖果的连边,因为一颗糖果可以产生K的高兴值,那么一个小朋友最多匹配(bi/k)+1次,但我们发现,如果bi%k!=0,那么匹配bi/k次后,他就会有个剩余bi%k,那么如果我们再用一个喜爱糖果去填,那么他就会产生一个超出,所以我们先将该糖果与小朋友之间连一条容量为bi/k,费用为k的边,然后对于这个剩余,我们分两种情况:
1.bi%k==1,这时候1个喜爱糖果和1个非喜爱糖果产生的效果一样,那么可以用一个非喜爱糖果去填,可以跳过不连边。
2.bi%k>1,连第二条边。但如果我们只考虑容量,就无法保证选择次数,所以这里加入费用,整个图变成费用流,那么一开始连的边费用就设为0,这里连的边就容量为1,保证只选一次,费用为b[i]%k的边。但这时候有个小问题:在SPFA的时候这条边因为费用小于费用为k的边,所以可能导致费用为k的边还未流满,该条边就已经流满了,这样是非法的,因为你流的第一块糖果(如果bi/k>=1)一定会产生k的贡献,但你只记了bi%k的贡献。记住:只有最后一块会产生bi%k的贡献,这样理解就行了。所以在SPFA增广最短路的时候,我们要先增广到费用为k的边,所以我们将费用取个相反数再跑最小费用流,最后得到的费用再取反就是最大费用(因为贪心思想,我们希望喜爱糖果产生的贡献要尽可能多),最后再比较一下剩下的糖果数和剩下的待贡献值即可。
(口胡完毕,如果有错请各位大佬指正)
【代码~】
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int MAXN=100;
const int MAXM=1e3+10;
const int INF=0x3f3f3f3f;
int n,m,k,cnt,s,t,cost,sum;
int head[MAXN],cur[MAXN],dis[MAXN],vis[MAXN];
int work[MAXN];
int nxt[MAXM],to[MAXM],w[MAXM],c[MAXM];
void Add(int x,int y,int z,int v)
{
nxt[cnt]=head[x];
head[x]=cnt;
to[cnt]=y;
w[cnt]=z;
c[cnt]=v;
cnt++;
}
void add(int x,int y,int z,int v)
{
Add(x,y,z,v);
Add(y,x,0,-v);
}
bool SPFA()
{
queue<int> q;
memset(dis,INF,sizeof(dis));
memset(work,0,sizeof(work));
memset(vis,0,sizeof(vis));
dis[s]=0;
q.push(s);vis[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=nxt[i])
{
int v=to[i];
if(dis[v]>dis[u]+c[i]&&w[i])
{
dis[v]=dis[u]+c[i];
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
if(dis[t]==INF)
return false;
return true;
}
int dfs(int u,int dist)
{
if(u==t)
{
cost+=dist*dis[t];
return dist;
}
int res=0;
work[u]=1;
for(int &i=cur[u];i!=-1;i=nxt[i])
{
int v=to[i];
if(dis[v]==dis[u]+c[i]&&w[i]&&!work[v])
{
int di=dfs(v,min(dist-res,w[i]));
if(di)
{
w[i]-=di;
w[i^1]+=di;
res+=di;
if(res==dist)
break;
}
}
}
return res;
}
int dinic()
{
int maxf=0;
while(SPFA())
{
for(int i=s;i<=t;++i)
cur[i]=head[i];
maxf+=dfs(s,INF);
}
return maxf;
}
int main()
{
int cas=1;
int tt;
scanf("%d",&tt);
while(tt--)
{
scanf("%d%d%d",&n,&m,&k);
memset(head,-1,sizeof(head));
memset(nxt,-1,sizeof(nxt));
cnt=2,sum=0,cost=0;
s=0,t=n+m+1;
for(int i=1;i<=n;++i)
add(s,i,1,0);
for(int i=1;i<=m;++i)
{
int x;
scanf("%d",&x);
sum+=x;
add(n+i,t,x/k,-k);
if(x%k>1)
add(n+i,t,1,-x%k);
}
for(int i=1;i<=m;++i)
{
for(int j=1;j<=n;++j)
{
int x;
scanf("%d",&x);
if(x)
add(j,n+i,1,0);
}
}
int flow=dinic();
int tmp=-cost;
if(n-flow>=sum-tmp)
cout<<"Case #"<<cas<<": "<<"YES"<<'\n';
else
cout<<"Case #"<<cas<<": "<<"NO"<<'\n';
cas++;
}
return 0;
}