内网传送门
【题目分析】
注:思路由WCR苣佬提供!!!
因为考的是基本没写过的数位DP,所以毫无疑问的挂了。。。
考虑下面四个性质:
最后的01串长度为
,因为10,01,10,01是交替出现的。
是00出现的次数。
是11 出现的次数。
所以可以根据将整个序列分割成多段连续0,1,考虑如果没有R的限制,那么就变成了一个经典的球盒问题,卡特兰数计算统计答案即可。
考虑加入R的限制,那么如果在R中非首位的为1的位置填入0,那么剩下的一段符合上面的结论,卡特兰数统计贡献即可。
注意一开始判一下R是否合法。
【代码~】
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const LL MAXN=1e5+10;
char L[MAXN],R[MAXN],ch;
LL l,r;
LL len=1,c[5],b[5];
LL l1=0,l2=0,l3=0,l4=0;
LL jc[MAXN+10],inc[MAXN+10];
LL ans=0,bns=0;
LL mul(const LL &a,const LL &b){
return (LL)a*b%mod;
}
LL Read(){
LL i=0,f=1;
char c;
for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
if(c=='-')
f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())
i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
LL ksm(LL a,LL b){
LL ret=1;
while(b){
if(b&1)
ret=(LL)(ret*a)%mod;
b>>=1;
a=(LL)(a*a)%mod;
}
return ret;
}
LL C(LL a,LL b){
if(b<=0)
return 1;
return mul(jc[a],mul(inc[b],inc[a-b]));
}
void pre(){
jc[0]=1;
for(LL i=1;i<=MAXN;++i)
jc[i]=mul(jc[i-1],i);
inc[MAXN]=ksm(jc[MAXN],mod-2);
for(LL i=MAXN-1;i>=0;i--)
inc[i]=mul(inc[i+1],i+1);
}
int main(){
pre();
scanf("%s%s",L+1,R+1);
l=strlen(L+1),r=strlen(R+1);
for(LL i=2;i<=r;++i){
if(R[i-1]=='0'&&R[i]=='0')
l1++;
else{
if(R[i-1]=='0'&&R[i]=='1')
l2++;
else{
if(R[i-1]=='1'&&R[i]=='0')
l3++;
else
l4++;
}
}
}
len+=b[1]=c[1]=Read(),len+=b[2]=c[2]=Read(),len+=b[3]=c[3]=Read(),len+=b[4]=c[4]=Read();
if(l1==c[1]&&l2==c[2]&&l3==c[3]&&l4==c[4])
ans++;
if((c[3]-c[2]<0)||(c[3]-c[2]>1)||(r<len)||(l>len)){
puts("0");
return 0;
}
if(l<len)
memset(L,'0',sizeof(L)),l=len,L[1]='1';
if(r>len)
memset(R,'1',sizeof(R)),r=len;
for(LL i=2;i<=len;i++){
if(R[i]=='0'){
if(R[i-1]=='0')
c[1]--;
else
c[3]--;
}
else{
if(R[i-1]=='0')
c[1]--;
else
c[3]--;
if(c[1]<0||c[3]<0||c[2]<0||c[4]<0)
break;
ans=(ans+(C(c[3]+c[1],c[1])*C(c[2]+c[4]-1,c[4]))%mod)%mod;
if(R[i-1]=='0')
c[1]++,c[2]--;
if(R[i-1]=='1')
c[3]++,c[4]--;
}
}
for(LL i=2;i<=len;i++){
if(L[i]=='0'){
if(L[i-1]=='0')
b[1]--;
else
b[3]--;
}
else{
if(L[i-1]=='0')
b[1]--;
else
b[3]--;
if(b[1]<0||b[3]<0||b[2]<0||b[4]<0)
break;
bns=(bns+(C(b[3]+b[1],b[1])*C(b[2]+b[4]-1,b[4]))%mod)%mod;
if(L[i-1]=='0')
b[1]++,b[2]--;
if(L[i-1]=='1')
b[3]++,b[4]--;
}
}
cout<<(ans-bns+mod)%mod<<'\n';
return 0;
}