NOIP模拟 几串字符(数位DP)

本文分享了一道关于数位动态规划(DP)的NOIP模拟题目的解题思路。作者提到由于对数位DP不熟悉导致考试失败。通过分析,提出了四个关键性质,涉及01串长度、00和11出现的次数。利用经典球盒问题的卡特兰数计算基础,结合R的限制进行调整,以解决此问题。同时强调需验证R的合法性。
摘要由CSDN通过智能技术生成

内网传送门

【题目分析】

注:思路由WCR苣佬提供!!!

因为考的是基本没写过的数位DP,所以毫无疑问的挂了。。。

考虑下面四个性质:

最后的01串长度为c_{0,0}+c_{0,1}+c_{1,0}+c_{1,1}+1

c_{0,1}+1\geq c_{1,0}\geq c_{0,1},因为10,01,10,01是交替出现的。

c_{1,0}+c_{0,0}是00出现的次数。

c_{0,1}+c_{1,1}+1是11 出现的次数。

所以可以根据将整个序列分割成多段连续0,1,考虑如果没有R的限制,那么就变成了一个经典的球盒问题,卡特兰数计算统计答案即可。

考虑加入R的限制,那么如果在R中非首位的为1的位置填入0,那么剩下的一段符合上面的结论,卡特兰数统计贡献即可。

注意一开始判一下R是否合法。

【代码~】

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const LL MAXN=1e5+10;

char L[MAXN],R[MAXN],ch;
LL l,r;
LL len=1,c[5],b[5];
LL l1=0,l2=0,l3=0,l4=0;
LL jc[MAXN+10],inc[MAXN+10];
LL ans=0,bns=0;

LL mul(const LL &a,const LL &b){
	return (LL)a*b%mod;
}

LL Read(){
	LL i=0,f=1;
	char c;
	for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
	if(c=='-')
	  f=-1,c=getchar();
	for(;c>='0'&&c<='9';c=getchar())
	  i=(i<<3)+(i<<1)+c-'0';
	return i*f;
}

LL ksm(LL a,LL b){
	LL ret=1;
	while(b){
		if(b&1) 
		  ret=(LL)(ret*a)%mod;
		b>>=1;
		a=(LL)(a*a)%mod;
	}
	return ret;
}

LL C(LL a,LL b){
	if(b<=0)
	  return 1;
	return mul(jc[a],mul(inc[b],inc[a-b]));
}

void pre(){
	jc[0]=1;
	for(LL i=1;i<=MAXN;++i) 
	  jc[i]=mul(jc[i-1],i);
	inc[MAXN]=ksm(jc[MAXN],mod-2);
	for(LL i=MAXN-1;i>=0;i--)
	  inc[i]=mul(inc[i+1],i+1);
}

int main(){
	pre();
	scanf("%s%s",L+1,R+1);
	l=strlen(L+1),r=strlen(R+1);
	for(LL i=2;i<=r;++i){
		if(R[i-1]=='0'&&R[i]=='0') 
		  l1++;
		else{
			if(R[i-1]=='0'&&R[i]=='1') 
			  l2++;
			else{
				if(R[i-1]=='1'&&R[i]=='0') 
				  l3++;
				else 
				  l4++;
			}
		}
	}
	len+=b[1]=c[1]=Read(),len+=b[2]=c[2]=Read(),len+=b[3]=c[3]=Read(),len+=b[4]=c[4]=Read();
	if(l1==c[1]&&l2==c[2]&&l3==c[3]&&l4==c[4]) 
	  ans++;
	if((c[3]-c[2]<0)||(c[3]-c[2]>1)||(r<len)||(l>len)){
		puts("0");
		return 0;
	}
	if(l<len) 
	  memset(L,'0',sizeof(L)),l=len,L[1]='1';
	if(r>len) 
	  memset(R,'1',sizeof(R)),r=len;
	for(LL i=2;i<=len;i++){
		if(R[i]=='0'){
			if(R[i-1]=='0') 
			  c[1]--;
			else 
			  c[3]--;
		}
		else{
			if(R[i-1]=='0') 
			  c[1]--;
			else 
			  c[3]--;
			if(c[1]<0||c[3]<0||c[2]<0||c[4]<0) 
			  break;
			ans=(ans+(C(c[3]+c[1],c[1])*C(c[2]+c[4]-1,c[4]))%mod)%mod;
			if(R[i-1]=='0') 
			  c[1]++,c[2]--;
			if(R[i-1]=='1') 
			  c[3]++,c[4]--;
		}
	}
	for(LL i=2;i<=len;i++){
		if(L[i]=='0'){
			if(L[i-1]=='0') 
			  b[1]--;
			else 
			  b[3]--;
		}
		else{
			if(L[i-1]=='0') 
			  b[1]--;
			else 
			  b[3]--;
			if(b[1]<0||b[3]<0||b[2]<0||b[4]<0) 
			  break;
			bns=(bns+(C(b[3]+b[1],b[1])*C(b[2]+b[4]-1,b[4]))%mod)%mod;
			if(L[i-1]=='0') 
			  b[1]++,b[2]--;
			if(L[i-1]=='1') 
			  b[3]++,b[4]--;
		}
	}
	cout<<(ans-bns+mod)%mod<<'\n';
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值