BZOJ2654 tree(二分+最小生成树)

传送门

【题目分析】

总感觉题目似曾相识的样子qwq。

其实二分的思路还是很好想的,初始状态无非就是在生成树中的白边的数量>需要的数量和<需要的数量,前者需要减少白边数量加黑边,后者相反。

减少白边相当于将白边的权值整体加一个值,增加就相当于减少一个值,就这样做最小生成树,最后因为恰好是need条白边所以权值一定就是(生成树权值-need*整体加的值)

【代码~】

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e4+10;
const int MAXM=1e5+10;

int n,m,k;
int fa[MAXN],ans;
int val;
struct Edge{
	int u,v,w;
	int col;
	friend inline bool operator<(const Edge &a,const Edge &b){
		if(a.w==b.w)
		  return a.col<b.col;
		return a.w<b.w;
	}
}edge[MAXM];

int Read(){
	int i=0,f=1;
	char c;
	for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
	if(c=='-')
	  f=-1,c=getchar();
	for(;c>='0'&&c<='9';c=getchar())
	  i=(i<<3)+(i<<1)+c-'0';
	return i*f;
}

int find(int x){
	if(x==fa[x])
	  return x;
	return fa[x]=find(fa[x]);
}

bool check(int x){
	int sum=0,tot=0;
	val=0;
	for(int i=1;i<=m;++i)
	  if(edge[i].col==0)
	    edge[i].w+=x;
	for(int i=1;i<=n;++i)
	  fa[i]=i;
	sort(edge+1,edge+m+1);
	for(int i=1;i<=m;++i){
		int u=edge[i].u,v=edge[i].v;
		int fu=find(u),fv=find(v);
		if(fu!=fv){
			sum++;
			val+=edge[i].w;
			fa[fu]=fv;
			if(edge[i].col==0)
			  tot++;
			if(sum==n-1){
			  	return tot>=k;
			}
		}
	}
	return 0;
}

int main(){
	n=Read(),m=Read(),k=Read();
	for(int i=1;i<=m;++i){
		edge[i].u=Read()+1;
		edge[i].v=Read()+1;
		edge[i].w=Read();
		edge[i].col=Read();
	}
	int l=-100,r=100,mid;
	while(l<=r){
		mid=l+r>>1;
		if(check(mid))
		  l=mid+1,ans=val-k*mid;
		else
		  r=mid-1;
		for(int i=1;i<=m;++i)
		  if(edge[i].col==0)
		    edge[i].w-=mid;
	}
	cout<<ans;
	return 0;
}

 

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值