从联合概率,到HMM

本文深入探讨了概率图模型的基础概念,包括联合概率、边缘概率和条件概率的关系,以及贝叶斯公式。详细讲解了贝叶斯网络和马尔可夫模型作为概率图模型的两大类别,以及它们在表示变量间条件独立关系中的应用。特别强调了独立性假设在朴素贝叶斯分类器中的作用。
摘要由CSDN通过智能技术生成

概率图:

联合概率分布简称联合分布,是两个及以上随机变量组成的随机向量的概率分布。

也就是单个变量的概率分布受另外一个变量取值的影响。

表示两个事件共同发生的概率。A与B的联合概率表示为 P(AB) 

对于连续性,

 

 

联合概率、边缘概率、条件概率之间的关系&贝叶斯公式

https://blog.csdn.net/tick_tock97/article/details/79885868

边缘概率是与联合概率对应的,P(X=a)或P(Y=b),这类仅与单个随机变量有关的概率称为边缘概率

 

条件概率表示在条件Y=b成立的情况下,X=a的概率,记作P(X=a|Y=b)或P(a|b),

 

“在条件Y=b下X的条件分布”也是一种“X的概率分布”,因此穷举X的可取值之后,所有这些值对应的概率之和为1即:
 ∑aP(X=a|Y=b)=1

 

 

说到底是建立再联合概率上理论基础上的

可以用集合去表示。

但是用集合表示过程中存在顺序,所以对于问题的集合表示方法有很多。

示例2配图

贝叶斯公式:是一个等量转换。

贝叶斯公式一般形式

 

概率图模型分为贝叶斯网络和马尔可夫两大类。

贝叶斯网络是一个有向无环图结构

马尔可夫是一个无向图结构。

概率图

概率图模型(Probabilistic Graphical Model,PGM),简称图模型,是指一种用图结构来描述多元随机变量之间条件独立关系的概率模型https://www.jianshu.com/p/031f374aa511

独立性假设

把变量之间的关系,约束到两个变量之间

当概率模型中的变量数量比较多时,其条件依赖关系也比较复杂。我们可以使用图结构的方式将概率模型可视化,以一种直观、简单的方式描述随机变量之间的条件独立性的性质,

常见的概率图模型可以分为两类向图模型和无向图模型。有向图模型的图结构为有向非循环图,如果两个节点之间有连边,表示对于的两个变量为因果关系。无向图模型使用无向图来描述变量之间的关系。每条边代表两个变量之间有概率依赖关系,但是并不一定是因果关系

局部马尔可夫性质:对一个更一般的贝叶斯网络,其局部马尔可夫性质为:每个随机变量在给定父节点的情况下,条件独立于它的非后代节点

朴素贝叶斯分类器

朴素贝叶斯分类器是一类简单的概率分类器,在强(朴素)独立性假设的条件下运用贝叶斯公式来计算每个类别的后验概率。

http://blog.itpub.net/69942346/viewspace-2652334/

https://www.jianshu.com/p/031f374aa511

每个状态的转移只依赖于之前的n个状态,这个过程被称为1个n阶的模型,其中n是影响转移状态的数目。最简单的马尔可夫过程就是一阶过程, 每一个状态的转移只依赖于其之前的那一个状态 ,这个也叫作 马尔可夫性质 。用数学表达式表示就是下面的样子:

 

包含转移概率和观察概率。

 

 

之后是,算法的介绍

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值