导言
人工智能可以变得像放射科医生一样好,并有助于照顾脑出血患者吗?答案是肯定的。对脑出血的时间诊断是非常关键的,早期发现可以显着增加生存机会。可能存在一些无法及时诊断的情况,在这种情况下,AI能够提供帮助。我们训练一个深度神经网络成为“第二对眼睛”,并且它不用休息。
在ParallelDots,我们非常认真地构建一个专有的AI堆栈,可以解决端到端的实际问题。这意味着需要构建专有数据集、专有算法和部署机制。虽然我们的数据标记引擎会从各个域(例如社交媒体,医疗保健,零售)中生成带注释的数据,但我们的数据科学团队开发了新的算法,可以使用这些数据并提供可在现实世界中部署的AI代理。在之前的文章中,我们向您介绍了我们全新的NLP堆栈,这得益于我们的数据标记引擎和数据科学团队努力的学习最前沿的技术。
Meta
头部受伤或任何其他可导致脑出血的情况都很严重,需要尽快发现。优选的诊断方法是计算机断层扫描(CT)扫描。CT扫描足够详细(尽管不像MRI那么详细),用它们对患者进行成像(MRI更慢)的速度更快。NCCT扫描(非对比CT)扫描头部并通过提供大脑的3D图来检测脑出血,其中大脑可被视为2D切片序列。医生通常在这些切片序列中上下滚动以定位异常。
Dataset
我们的医疗数据注释团队标记了2D CT切片序列的数据集。作为医疗专业人员,这是他们注释的更明显的方式,因为他们主要使用它。对于每个切片,具有异常的区域(在这种情况下,脑出血)如果存在则由松散的近似边界标记,以这种方式标记了超过300,000个CT切片,以确定是否存在多种病变。数据科学团队首先选择训练的子集是脑出血标记切片。
Architecture
我们为数据科学团队定义了问题陈述,如下所示:
鉴于CT扫描,AI需要判断切片中是否存在出血,并告诉切片中的哪些结构使其如此。
如前面提到的GIF所示,你可以看到AI认为在确定出血时的重要区域(也称为AI的注意)。
我们决定将建立序列建模,其中序列的每个元素都是2D切片,其中有也包含不是感兴趣的区域。卷积神经网络对每个图像进行建模,其中标记的感兴趣区域用作分类标签,并且来自这种DenseNet的整个序列的表示通过双向LSTM传递到模型上下文。循环(LSTM)模型与DenseNets的关注,我们称之为RADNet。
性能和结果
对于要为临床应急设置部署的任何自动化系统,需要可靠的估计以及对人类专家水平的高度敏感性。我们将算法的性能与现实世界放射科医师的判断结果进行了比较。在77个脑CT的数据集上测量了三名高级放射科医师和RADnet的表现。RADnet在CT水平上的出血预测准确率为81.82%,与放射科医师相当。结果显示在此表中:
与三位放射科医师中的两位相比,RADnet的Recall率更高,这是非常了不起的。
结语
RADnet算法模拟放射科医师诊断CT扫描脑出血的方法,与放射科医师检测异常情况相当。值得注意的是,部署自动紧急诊断工具需要非常高的灵敏度。此外,仍然存在许多其他同样严重的大脑条件,给定的算法不知道。
我们设想未来类似的紧急诊断工具可以检测脑CT扫描的不同异常。我们高度重视这样一个事实,即所提出的解决方案不应被误解为该领域实际放射科医师的合理替代品。RADNet展示了作为紧急诊断工具部署的潜力。然而,它的真实表现仍然需要进一步的实验。
长按订阅更多精彩▼