原创 | 基于AI的智能急性颅内出血类型检测

本文介绍了基于AI的急性颅内出血类型检测技术,探讨了颅内出血的分类及其对治疗的重要性。文章提及北美放射学会组织的活动,旨在利用AI算法自动识别颅内出血类型,并分析了数据集、CT图像特征、窗函数在识别中的作用,以及使用深度学习网络进行图像分类的实验。
摘要由CSDN通过智能技术生成

作者:杨毅远

本文约6400字,建议阅读10分钟

本文介绍了通过AI技术检测急性颅内出血类型方面的知识。

颅内出血(颅骨内出血)是医疗领域严重的健康问题,需要快速且经常进行密集的医学治疗。在美国,颅内出血约占中风的10%,其中中风是导致死亡的第五大原因。在医学界,识别任何出血的位置和类型是治疗患者的关键步骤。现在的情况下需要医生或者是训练有素的专家对于病人的颅骨的医学影像进行查看并找出出血的位置从而判断出具体的出血亚型。通常这个过程很复杂、很耗时间而且会浪费很多的人力物力。所以急需一种图像处理的方法来根据医学影像来检测是否有颅内出血的现象以及具体的颅内出血的类型(亚型)。

2019年底,由北美放射学会(RSNA)与美国神经放射学会和MD.ai成员共同组织了基于AI的智能急性颅内出血类型检测的活动,旨在全球范围内寻找最优的自动识别颅内出血类型的算法。其中RSNA是放射医学领域的工人的领头羊,其中有来自全球146个国家的54,000多名成员,其中不乏医学物理学家和其他医学专业人士。这个项目所用的数据集以及标注的工作是由斯坦福大学、托马斯·杰斐逊大学、多伦多团结健康大学和圣保罗联邦大学(UNIFESP)以及美国神经放射学会(ASNR)的60多名志愿者组成的团队完成的。其中的ASNR是神经放射学未来的全球领先组织,代表5300多位放射科医生,研究人员,干预人员和影像学家。基于以上的技术支持以及技术指导,也使得这个项目的意义重大,如果可以准确的确定是否出血进而判断出血的类型,这对于治疗患者、争取宝贵的救援时间等等方面都非常有帮助。

常见的颅内出血按照位置可以分为硬膜外出血(epidural)、硬膜下出血(subdural)、蛛网膜下腔出血(subarachnoid)、实质内出血(intraparenchymal)以及脑室内出血(intraventricular)。其中实质内出血是指完全位于大脑内部的血液。脑室内或蛛网膜下腔出血是指渗入通常含有脑脊液(脑室或蛛网膜下腔池)的大脑空间的血液。轴外出血是指血液聚集在大脑周围的组织覆盖物中(例如,硬膜下或硬膜外亚型)患者可能会出现多种类型的脑出血。下面是总结的5中颅内出血类型以及其基本特征。

1.硬膜外出血(epidural):硬膜外出血是在硬脑膜外发生的,硬膜外出血是指硬脑膜和颅骨之间发生的出血。该膜是最顶层的脑膜,是颅骨内稳态的重要组成部分。由于硬脑膜对维持大脑位置的重要结构作用,硬脑膜损伤可导致许多临床功能障碍。它强大的结构耐久性为其取了名字(拉丁语中的“ dura mater”意为“坚韧的母亲”!)。这种组织屏障对于血液向大脑的运输至关重要。具体的位置见下图:

2.硬膜下出血(subdural):硬膜下出血是在硬脑膜和蛛网膜脑膜之间发生的出血。由于硬脑膜的双重性质,其一侧负责将动脉血液(输送到大脑),而另一侧负责输送静脉血(输送到大脑之外)。与这两种不同类型的血液相互作用的出血可能对患者的健康和成像输出产生许多不同的影响。

3. 实质内出血(intraparenchymal):实质内出血是发生在脑实质内的那些出血。实质包含大脑的功能单元,主要是神经胶质细胞和神经胶质细胞维持/辅助的神经元。因此,我们的大脑区域出现了出血,这意味着“遍及整个区域”。实际上,整个区域通常是指解剖结构内的任何块状物质。因此,我们将大脑描述的大部分是大脑的实质。这意味着实质内出血非常严重!

4. 脑室内出血(intraventricular):脑室内出血是发生在脑室内的出血。我们大多将大脑想象为肉质的肉质球,但是大脑的一个重要的解剖特征是其负空间或心室的存在(拉丁文的venter表示腹部或子宫)。心室在尝试诊断大脑疾病时非常有用,并且在脑部生理中起着至关重要的作用。当查看图像时,知道人在大脑中的什么位置通常很有用,并且心室可用于将自己定向到大脑中的某个区域。

5. 蛛网膜下腔出血(subarachnoid):蛛网膜下腔出血是血液进入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值