长期定量预测的方法与应用
1. 引言
在预测与控制领域,传统的概率和模拟方法所构建的模型具有主观性,长期预测的准确性欠佳,这在一定程度上削弱了控制论的权威性。而自组织方法有望彻底改变这一状况,借助归纳学习算法运行的计算机能够作为平等伙伴参与到创造性过程中,与人类共同解决复杂问题。接下来,我们将深入探讨相关的理论和方法。
2. 多层算法与相关模型算法
多层算法具有独特的优势,它能够得到项数比数据样本点数更多的多项式,且谐波数量超过第一层的谐波数量。通过合理选择组合准则,特别是将最小偏差准则作为其中之一,仅需少量数据点就能重现原函数的所有项。不过,基于多层算法且有无误差前向传播的自组织模型结果,只有在初始数据样本较大且使用最小偏差准则解决识别问题时才会一致。
相关模型的乘加算法以及具有正交化部分函数的算法,拓展了归纳方法所使用的函数空间区域,从而提升了解决复杂问题的可能性。
3. 自相关函数
在随机过程的统计预测中,自相关函数是一个关键概念。它借助过程的经验数据(即其过往历史),运用过程的概率特征和相应算法来估计未来值。其中,相关函数 $A_y$ 体现了过程中相隔时间间隔 $\tau$ 的值之间的统计联系:
[A_y(t_1,t_2) = A_y(\tau) = E[y(t_1)y(t_1 + \tau)]]
这里,$\tau = t_2 - t_1$,$E$ 表示期望值,$y(t)$ 是 $m_y$ 中心化过程($m_y$ 为过程的数学期望)。
通常会使用归一化的相关函数:
[ \text{归一化相关函数} = \frac{A_y(\tau)}{A_y(0)}] <