无监督学习 - 关联规则学习(Association Rule Learning)

什么是机器学习

关联规则学习(Association Rule Learning)是一种无监督学习方法,用于发现数据集中的项之间的关联关系。这种方法通常用于分析交易数据或者购物篮中的商品购买情况,以便找出经常一起购买的商品。一个经典的关联规则的例子是"如果顾客购买了牛奶,那么他们也很可能购买面包"。

Apriori 算法是一种常用的关联规则学习算法。下面是一个简单的教程,演示如何使用 Python 中的 mlxtend 库来实现关联规则学习。

步骤1: 安装 mlxtend 库

pip install mlxtend

步骤2: 导入库

import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

步骤3: 准备数据

准备一个包含交易数据的数据集。数据集的每一行表示一个交易,每一列表示一个商品。数据集的值通常是二进制的,表示是否购买了某个商品。

# 示例数据
data = {'Transaction': ['T1', 'T2', 'T3', 'T4', 'T5'],
        'Item1': [1, 0, 1, 1, 0],
        'Item2': [1, 1, 0, 1, 1],
        'Item3': [0, 1, 1, 0, 1],
        'Item4': [1, 1, 1, 0, 1]}

df = pd.DataFrame(data).set_index('Transaction')

步骤4: 使用 Apriori 算法找出频繁项集

# 找出频繁项集
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)

步骤5: 生成关联规则

# 根据频繁项集生成关联规则
rules = association_rules(frequent_itemsets, metric='confidence', min_threshold=0.7)

步骤6: 查看关联规则

# 查看关联规则
print(rules)

这个例子中,我们通过示例数据集演示了如何使用 Apriori 算法来找出频繁项集,然后通过设定置信度阈值生成关联规则。在实际应用中,你可以使用更大规模的真实数据集,并根据具体情况调整参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值