ubuntu人工智能深度学习环境搭建。cuda和cudnn和anaconda和torch的安装。

几乎和wsl差不多,网不好的先下载好软件包,按顺序执行命令。

sudo mv cuda-ubuntu2404.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo dpkg -i cuda-repo-ubuntu2404-12-8-local_12.8.1-570.124.06-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2404-12-8-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8


key文件添加后再运行一次解包。

sudo dpkg -i cuda-repo-ubuntu2404-12-8-local_12.8.1-570.124.06-1_amd64.deb


更新一下包目录,

sudo apt-get update


开始安装cuda。

sudo apt-get -y install cuda-toolkit-12-8


没自动添加环境变量就手动添加一下。

echo 'export PATH=/usr/local/cuda-12.8/bin${PATH:+:${PATH}}' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc


nvcc -V输出cuda版本。nvidia-smi输出显卡信息。
打开之前装wsl时的包目录,安装包都通用的。安装conda。也没自动添加环境变量,手动添加一下。

echo 'export PATH="$root/anaconda3/bin:$PATH"'>> ~/.bashrc


conda换清华源,先看一下设置

conda config --show

然后根目录下ls a查看隐藏项,修改condarc文件。
nano不认粘贴板啊,装个vim吧。按i键进入插入模式,地址粘贴过去按ESC键退出,键入:wq保存修改退出。放弃修改则键入:q!退出。
新建个python12的环境,

conda create -n name python=3.12


切换到新环境。

source activate 环境名


pip换清华源

pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple


安装torch之前的wheel包也通用,

pip install 包名


跟网速有关,大文件之前下了包,手动安装一下大文件,小文件就现场下载吧。cudnn的包也是通用的,解压到cuda目录下,或者执行解压命令到对应文件夹下。

sudo tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz -C /usr/local/cuda-12.8


因为装的最新版本cuda,记得改一下对应的版本号。
装好后进入python环境,运行官方命令测试cuda和cudnn可用性输出。

import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())


不要慌,导入cudnn在torch的子集包下,多一级backends。都输出可用,大功告成。
至此,windows环境,wsl环境,docker环境,linux环境下cuda和cudnn和torch的人工智能深度学习环境搭建全部完成。完结撒花。
 

在Python深度学习环境中配置 PyTorchCUDA cuDNN通常涉及以下几个步骤: 1. **安装Anaconda**: Anaconda是一个包含了Python大量科学计算库的开源发行版。首先,访问https://www.anaconda.com/products/distribution 下载适合你操作系统的版本。 2. **创建新环境**: 打开命令行或终端,创建一个新的Conda虚拟环境用于深度学习项目: ``` conda create -n pytorch_env python=3.8 anaconda ``` 进入新环境: ``` conda activate pytorch_env ``` 3. **安装PyTorch**: ``` conda install pytorch torchvision cudatoolkit=11.0 -c pytorch ``` 或者使用pip: ```bash pip install torch torchvision cpuonly-cuml -f https://nvidia.github.io/cuda-repo-ubuntu1804/ ``` 如果需要GPU支持,记得替换`cudatoolkit`版本为你电脑实际的CUDA版本。 4. **安装cuDNN**: 对于PyTorchcuDNN已经内置于了安装包里,无需单独安装。如果你需要确认,可以检查`torch.backends.cudnn.version()`。 5. **安装PyCharm**: 访问PyCharm官网下载并安装,选择"专业版"或"社区版"都行。安装完成后,在PyCharm中设置新项目时,选择Python解释器时选择刚才创建的虚拟环境。 6. **配置PyCharm**: - 打开PyCharm,点击 "Edit Configurations" -> "Project Interpreter",然后点击 "+" 添加新的Python解释器,从现有环境列表中选择你刚创建的虚拟环境。 - 配置 CUDA 可能需要额外设置,如果遇到CUDA路径找不到的问题,可以在PyCharm的运行/调试配置中手动添加路径。 7. **验证环境**: 在PyCharm中运行一个简单的PyTorch代码片段,测试是否能够正常利用GPU加速。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值