Ubuntu24版 最新安装CUDA驱动方式


欢迎来到 全干工程师的运维之路 系列专栏。
无论是前/后端的开发者,若是团队不大,运维方面的技术就成了必须要接触的知识。更多知识请关注本专栏哦

背景介绍

上一步我们完成了显卡驱动的安装,那么接下来就是必不可少的CUDA,如果驱动还没安装好,请参考:显卡驱动

NVIDIA CUDA是一个由NVIDIA推出的并行计算平台和编程模型,可以利用NVIDIA显卡进行高效的计算任务加速。如果你正在使用Ubuntu操作系统并且希望在你的GPU上进行深度学习、科学计算等任务,那么正确安装CUDA驱动和工具包是必不可少的。

这篇博客将详细介绍如何在Ubuntu上安装CUDA驱动,从选择合适的CUDA版本到安装过程中的每一步,帮你轻松完成整个安装流程。

安装CUDA

(一)选择合适的CUDA版本

首先,我们要选择与显卡驱动兼容的CUDA版本。我显卡的驱动版本是 550.120,因此我可以选择安装 CUDA 12 版本。一般来说,当前大部分显卡驱动版本都在 525 以上,可以安装 CUDA 12 版本。如果你的显卡较旧,可以根据显卡驱动版本查找适配的CUDA版本。

### 如何在Ubuntu上仅安装CUDA而不更新或安装NVIDIA显卡驱动 为了实现在Ubuntu上只安装CUDA而不需要重新安装或更新现有的NVIDIA显卡驱动程序,可以采取以下方法: #### 方法一:通过官方仓库安装特定本的CUDA工具包 如果系统已经成功配置好合适的NVIDIA驱动,则可以直接从Ubuntu软件源中单独获取CUDA组件。这可以通过指定`--no-install-driver`选项来实现,在某些情况下可能需要手动调整APT源列表。 ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update # 安装 CUDA 工具包而不安装新的 NVIDIA 驱动器 sudo apt-get install --no-install-recommends cuda-toolkit-12-0 ``` 此方式适用于那些希望保持现有图形栈稳定性的用户,并且只需要编译CUDA应用程序的情况[^2]。 #### 方法二:下载独立的CUDA Toolkit运行档文件并执行静默安装 另一种方案是从[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads)下载适合当前操作系统的CUDA toolkit本地deb (network) 本。这种离线安装包允许更灵活的选择哪些依赖项要被处理。重要的是要注意选择不含驱动程序捆绑的产品变体。 一旦选择了正确的安装包之后,按照下面的方式来进行安装: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update # 下载网络安装包而非完整以避免不必要的驱动覆盖 wget https://developer.download.nvidia.com/compute/cuda/12.0.0/local_installers/cuda-repo-ubuntu2204-12-0-local_12.0.0-1_amd64.deb sudo dpkg -i ./cuda-repo-ubuntu2204-12-0-local_12.0.0-1_amd64.deb sudo cp /var/cuda-repo-ubuntu2204-12-0-local/cuda-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install cuda ``` 这种方法能够确保不会无意间替换掉已有的专有驱动程序设置[^3]。 #### 设置环境变量 无论采用哪种方式进行安装,都需要记得将新安装好的CUDA路径加入到用户的PATH和LD_LIBRARY_PATH环境中去以便正常使用。 ```bash echo 'export PATH=/usr/local/cuda-12.0/bin${PATH:+:${PATH}}' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc source ~/.bashrc ``` 完成上述步骤后应该就可以顺利地使用预存在的NVIDIA GPU硬件加速功能的同时享受最新CUDA SDK特性了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值