线性回归和逻辑回归损失函数推导

本文详细探讨了线性回归的最小二乘损失函数推导过程,基于概率论中的中心极限定理和高斯分布假设。同时,解释了逻辑回归中使用sigmoid函数的原因,并介绍了交叉熵损失函数的推导,将模型视为极大似然估计问题。
摘要由CSDN通过智能技术生成

线性回归和逻辑回归损失函数推导

@(数据挖掘)


一、线性回归最小二乘loss推导

我们都知道线性回归是机器学习中最简单,使用范围也很广的一个算法,经典且使用。而它的损失函数最小二乘损失,大家也很熟悉,但是为什么要用最小二乘loss呢?正文开始:
可以通过一系列假设,从概率的角度去说明为什么选最小二乘(按理说,我们有许多函数可以定义损失)。
我们这里的假设证明不是唯一的,还有许多方法可以证明,有兴趣的可以自行google。

  1. 假设:
    y(i)=θTx(i)+ε(i) y ( i ) = θ T x ( i ) + ε ( i )
    ε(i)=error ε ( i ) = e r r o r
    这里的error也就是模型和实际数值之间的误差值
    根据中心极限定理(许多独立随机变量组合会符合高斯分布),我们可以接着假设误差项符合高斯分布:
    ε(i)N(0,σ2) ε ( i ) ∼ N ( 0 , σ 2 )
    即概率密度函数为
    P(ε(i))=12πσexp((ε(i))22σ2) P ( ε ( i ) ) = 1 2 π σ e x p ( − ( ε ( i ) ) 2 2 σ 2 )
  2. 上述误差函数的概率密度函数服从高斯分布,则我们易知:
    P(y(i)|x(i);θ)=12πσexp((y(i)θTx(i))22σ2) P ( y ( i ) | x ( i ) ; θ ) = 1 2 π σ e x p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值