线性回归和逻辑回归损失函数推导
@(数据挖掘)
一、线性回归最小二乘loss推导
我们都知道线性回归是机器学习中最简单,使用范围也很广的一个算法,经典且使用。而它的损失函数最小二乘损失,大家也很熟悉,但是为什么要用最小二乘loss呢?正文开始:
可以通过一系列假设,从概率的角度去说明为什么选最小二乘(按理说,我们有许多函数可以定义损失)。
我们这里的假设证明不是唯一的,还有许多方法可以证明,有兴趣的可以自行google。
- 假设:
y(i)=θTx(i)+ε(i) y ( i ) = θ T x ( i ) + ε ( i )
ε(i)=error ε ( i ) = e r r o r
这里的error也就是模型和实际数值之间的误差值
根据中心极限定理(许多独立随机变量组合会符合高斯分布),我们可以接着假设误差项符合高斯分布:
ε(i)∼N(0,σ2) ε ( i ) ∼ N ( 0 , σ 2 )
即概率密度函数为
P(ε(i))=12π√σexp(−(ε(i))22σ2) P ( ε ( i ) ) = 1 2 π σ e x p ( − ( ε ( i ) ) 2 2 σ 2 ) - 上述误差函数的概率密度函数服从高斯分布,则我们易知:
P(y(i)|x(i);θ)=12π√σexp(−(y(i)−θTx(i))22σ2) P ( y ( i ) | x ( i ) ; θ ) = 1 2 π σ e x p