
.NET 8 + ML.NET LTR 智能类目匹配实战
文章平均质量分 68
从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战
喵叔哟
Dedicated to promoting and advancing .NET in China for a lifetime.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
3. 从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战--从业务到方案:消费类目智能匹配的整体设计
本文介绍了一种基于Learning-to-Rank(LTR)的智能记账系统设计方案,通过机器学习技术实现从"用户手动选择"到"系统自动推荐"的消费类目匹配。该系统采用.NET技术栈(ML.NET+LightGBM),通过四层回退策略和渐进式学习机制,解决了传统记账软件操作繁琐、分类不准确的问题。文章详细分析了业务痛点、技术选型依据和整体架构设计,重点阐述了LTR方案相比传统分类方法的优势,包括更好的个性化支持、更直观的可解释性以及对增量学习的友好性。系统采用分层架构设原创 2025-09-29 02:41:22 · 1050 阅读 · 0 评论 -
1. 从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战--目录
本文系统介绍了消费类目智能匹配系统的设计与实现。从业务需求分析入手,详细阐述了数据特征工程、LightGBM排序模型构建、反馈闭环机制等技术方案。重点讨论了四层兜底策略的设计、MongoDB数据治理方案,以及Web API接口开发和生产环境的部署运维要点。整个系统实现了从数据处理、模型训练到在线服务的完整链路,并建立了持续优化的学习闭环机制。原创 2025-09-28 00:43:56 · 342 阅读 · 0 评论 -
2. 从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战--前言
从0到上线:.NET 8 + ML.NET LTR 智能类目匹配实战》专栏是《.NET 8 实战–孢子记账–从单体到微服务–微服务》专栏的配套专栏,旨在通过一个完整的智能类目匹配项目,展示如何使用 .NET 8 和 ML.NET 构建和部署机器学习解决方案。原本打算将这几篇文章发布在孢子记账专栏中,但考虑到内容的专业性和针对性,决定单独成专栏发布。这篇文章将介绍专栏的整体结构和内容安排,帮助读者了解接下来的学习路径。专栏一共8篇文章,涵盖从业务需求分析到模型部署的各个环节。原创 2025-09-28 01:37:52 · 446 阅读 · 0 评论