【空间分析之二】点数据集加权平均中心统计(weighed Mean Center)

本文介绍了点数据集的加权平均中心统计,即考虑权重因素如人口数量或距离的点数据集平均位置。通过数学公式阐述了计算原理,并提供了Python实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点数据集描述性空间统计之二——加权平均中心统计(weighed Mean Center)原理及python实现

1.原理

一个点数据集中,例如每个点所处的小区人口有多有少,或则到某个固定地点的距离有长有短,考虑这些权重因素的情况下,求得的点数据集的平均中心,就是权重平均中心。

2.公式

X ‾ = ∑ i = 1 N W i X i ∑ i = 1 N W i \overline{X}= \dfrac{\sum_{i=1}^{N}W_{i}X_{i}}{\sum_{i=1}^{N}W_{i}} X=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值