描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
解题思路
本题可以看成是线段的覆盖问题。就是用最少的区间来覆盖一定长度的线段,求最少用到的区间数。不过这里的区间不是题中直接给的,仅需要小小的变换一下即可。
主要用到的算法:贪心算法。
代码
#include <iostream>
#include <algorithm>
#include <cmath>
#include <stdio.h>
using namespace std;
struct radius{
int x; //线段区间的左点;
int r; //线段区间的右点;
}rad[10005];
bool cmp(radius a,radius b){//为sort()函数服务;
if(a.x<b.x) return true;//if(a.x==b.x&&a.r>b.r) return true;
return false;
}
int main(){
int T;
cin>>T;
while(T--)
{
int w,h,n,i,x,r,count=0;
double sum=0,rx;
cin>>n>>w>>h;
for(i=0;i<n;i++)
{
cin>>x>>r;
rx=(double)(r*r-(h/2)*(h/2));
if(rx<0) rx=0;// {rad[i].x=0;rad[i].r=0;}
else //将给定的圆的圆心和半径变成我们想要的区间点的操作;
{
//cout<<"输出的是else中的内容。。。"<<endl;
rad[i].x=x-sqrt(rx);
rad[i].r=x+sqrt(rx);
}
}
sort(rad,rad+n,cmp);
int flg=1;
double max;
while(sum<w){
max=0;
for(int i=0;i<=n-1&&rad[i].x<=sum;i++){
if(rad[i].r-sum>max) max=rad[i].r-sum;
}
if(max==0){flg=0;break;}
else {sum+=max;count++;}
}
if(flg) cout<<count<<endl;
else cout<<"0"<<endl;
}
// system("pause");
return 0;
}