1、神经信息的编码与解码方法:
由于脉冲神经网络的输入输出是脉冲序列,不能直接进行模拟量的计算,首先要考虑的问题是神经信息的编码与解码机制.编码是指将样本数据或刺激信号转换为脉冲序列,而解码是编码的逆向过程,是将脉冲序列映射为输出结果或特定反应. 目前,研究者借鉴生物神经元对特定刺激信号的编码机制,除了神经信息的频率编码外,给出了延迟编码、相位编码、Time-to-First-Spike 编码、BSA(Bens Spike Algorithm)编码等时间编码策略。
2、神经元模型与网络模拟策略:
脉冲神经元是构成脉冲神经网络的基本单元,根据复杂程度将脉冲神经元的计算模型分为具有生物可解释性的生理模型、具有脉冲生成机制的非线性模型和具有固定阈值的线性模型三类。由于脉冲神经元被表示为由连续系统和离散脉冲事件构成的混合系统,脉冲神经网络的模拟不同于传统的人工神经网络,一般采用时钟驱动或事件驱动模拟策略,而且研究结果表明,不同的神经元模型及模拟策略影响脉冲神经网络的动态特性与学习性能。
3、脉冲序列的相似性度量方法:
脉冲序列的相似性度量是对脉冲序列相似程度的定量计算方法,研究者已经给出了不同的度量方法。 在脉冲神经网络的监督学习过程中,需要对目标脉冲序列和实际输出脉冲序列进行相似性度量,即计算它们的误差. 通过脉冲序列误差的计算,一方面用于衡量监督学习的精度,当误差小于给定值时,结束学习迭代的过程;另一方面,在有些监督学习(如梯度下降学习)算法中,通过定义特定的误差函数,将其应用于学习规则的推导.