最近,瑞士类脑芯片公司aiCTX对外宣布开源其脉冲神经网络仿真平台SINABS。SINABS是目前全球第一款打通了深度学习、脉冲神经网络、类脑芯片完整通路的仿真平台,有了这一仿真平台,我们就可以非常方便地进行训练、测试和验证大规模脉冲神经网络模型。
脉冲神经网络 (SNN:Spiking Neuron Networks) ,又称第三代人工神经网络。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。第二代神经网络包括比较广泛,包括应用较多的BP神经网络,第二代神经网络传递的内容都是基于数值的,因此和生物大脑中采用脉冲传递信息存在差距。
在这样的情况下,第三代人工神经网络--脉冲神经网络应运而生。脉冲神经网络采用了生物神经元模型如IF,LIF等,比之前人工神经网络的神经元更接近生物;信息的传递是基于脉冲进行,所以网络的输入要进行额外编码;基于脉冲的脉冲的编码,能蕴含更多的信息;网络的能耗更低,每个神经元单独工作,部分神经元在没接受到输入时,将不会工作。因此,脉冲神经网络更高效、数据更丰富、功耗也更低。
在类脑芯片方面,IBM在2014年就发布的类人脑芯片TrueNorth,在这个只有邮票大小的硅片上,集成了100万个“神经元”,256个“突触”,4096个并行分布的神经内核,用了54亿个晶体管,然而功耗却只有70mW。加载了神经网络模型的TrueNorth芯片,可作为实时感知流推理引擎使用,而且能够在快速、准确分类的同时保持超低功耗。TrueNorth拥有100万个神经元,邮票大小,能力相当于一台集成了“神经突触”的超级计算机。
除了TrueNorth外,英特尔Loihi芯片、高通Zeroth芯片、西井科技DeepSouth芯片、浙大“达尔文”类脑芯片。
而最近一种在光线作用下工作的人工神经网络芯片问世,更是为创造下一代类脑计算机铺平了道路。光学神经突触网络能够学习信息,并且使用它作为计算和模式识别的基础,这和人类大脑的工作方式很类似,此外这个系统并没有采用传统的电子运动方式,转而采用了更快速度的光线驱动(光的运动速度:3乘以10的八次方米每秒)。因此工作功率更低,速度更快。
从深度学习、脉冲神经网络、类脑芯片的基础研究,到脉冲神经网络仿真平台SINABS的开源,系统化的训练、测试和验证大规模脉冲神经网络模型,将对未来人工智能发展带来非常好的帮助,未来可期。
对此,你们怎么看?