打卡第16天,今天学习基于Mindspore的红酒分类实验
首先,了解分类,此实验则是使用分类方法之一的K近邻聚类算法,简称KNN。
简单描述即 数据集 可以根据相似/同 性,进行分类,然后不同大类之间的差异会很大,量化到比如用距离来衡量的化, 大类之内的数据差异如果在1以内的话,那么大类之间的数据差异则会在5或者10之上,当然会存在离散的例外数据样本。 只要正确率达到设定或更好就说明有效。
打卡第16天,今天学习基于Mindspore的红酒分类实验
首先,了解分类,此实验则是使用分类方法之一的K近邻聚类算法,简称KNN。
简单描述即 数据集 可以根据相似/同 性,进行分类,然后不同大类之间的差异会很大,量化到比如用距离来衡量的化, 大类之内的数据差异如果在1以内的话,那么大类之间的数据差异则会在5或者10之上,当然会存在离散的例外数据样本。 只要正确率达到设定或更好就说明有效。