0101集合-映射与函数-函数与极限

0101集合-映射与函数-函数与极限

目录




内容

一、集合

1、集合的概念

  • 定义
集合值具有特定性质的事物的总体,组成这个集合的事物称为改集合的元素。
  • 集合的表示

    • 列举法: 把集合的元素一一列举出来

      • 例如,由 a 1 , a 2 a_1,a_2 a1,a2组成的集合A,可表示为
        A = { a 1 , a 2 , a 3 , . . . , a n } A=\{a_1,a_2,a_3,...,a_n\} A={a1,a2,a3,...,an}
    • 描述法:若集合M是由具有某种性质P的元素x组成的集合,可表示为,
      M = { x ∣ x 具 有 性 质 P } M=\{x|x具有性质P\} M={xxP}

  • 常用集合(数集):*号表示排除0的数;+号表示非负数。

    • 自然数N
      N = { 0 , 1 , 2 , . . . , n } N=\{0, 1, 2, ..., n\} N={0,1,2,...,n}

    • 正整数 N + N^+ N+
      N + = { 1 , 2 , 3 , . . . , n } N^+=\{1, 2, 3, ..., n\} N+={1,2,3,...,n}

    • 整数Z
      Z = { − n , . . . , − 2 , − 1 , 0 , 1 , 2 , . . . , n } Z=\{-n,..., -2,-1,0,1,2,...,n\} Z={n,...,2,1,0,1,2,...,n}

    • 有理数Q
      Q = { p q ∣ p ∈ Z , q ∈ N + , 且 p 与 q 互 质 } Q=\{\frac{p}{q}|p\in Z,q\in N^+,且p与q互质\} Q={qppZ,qN+,pq}

    • 实数集合R

  • 元素与集合,集合与集合关系

    设A、B是2个集合,如果集合A中的元素都是集合B的元素,则称集合A为结合B的子集。 如果集合A与集合B互为子集,则称集合A与集合B相等。 若

    A ⊂ B 且 A ≠ B A\subset B 且 A\neq B ABA=B

    则称集合A为集合B的真子集。 不含任何元素的集合为空集,记做
    $$ \varnothing,\varnothing\subset 任意集合 $$
    • 元素a属于集合A: a ∈ A a\in A aA

    • 元素a不属于集合A: a ∉ A a\notin A a/A

    • 集合A是集合B的子集: A ⊂ B A\subset B AB

    • 集合A是集合B的真子集: A ⊆ B A \subseteq B AB

2、集合的运算

2.1、基本运算

集合的基本运算:并、交、差。

设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集

记做 A ∪ B A\cup B AB,即
A ∪ B = { x ∣ x ∈ A 或 x ∈ B } A\cup B = \{x|x\in A 或 x\in B\} AB={xxAxB}

由所有既属于A又属于B的元素组成的集合,称为A与B的交集

记做 A ∩ B A\cap B AB,即
A ∩ B = { x ∣ x ∈ A 且 x ∈ B } A\cap B = \{x|x\in A 且 x\in B\} AB={xxAxB}

有所有属于A而不属于B的元素组成的集合,称为A与B的差集

记做 A ∖ B A\setminus B AB,即
A ∖ B = { x ∣ x ∈ A 且 x ∉ B } A\setminus B=\{x|x\in A 且x\notin B\} AB={xxAx/B}

有时,我们研究问题会限定在一个大的集合I中进行,所研究的其他集合A都是I的子集。此时,我们称集合I为全集或者基本集,称I\A为A的余集或者补集

记做 A C A^C AC

2.2、运算法则

集合的并、交、余运算满足一下法则。

设置A、B、C为任意3个集合,则有以下法则成立:

  1. 交换律 $A\cup B=B\cup A, $ ,$A\cap B = B\cap A $
  2. 结合律 ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup(B\cup C) (AB)C=A(BC), ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A\cap B)\cap C=A\cap(B\cap C) (AB)C=A(BC)
  3. 分配律 ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) (A\cup B)\cap C=(A\cap C)\cup(B\cap C) (AB)C=AC)(BC) ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap(B\cup C) (AB)C=AC)(BC)
  4. 对偶律 ( A ∪ B ) C = A C ∩ B C (A\cup B)^C=A^C\cap B^C (AB)C=ACBC, ( A ∩ B ) C = A C ∪ B C (A\cap B)^C=A^C\cup B^C (AB)C=ACBC

对偶律等式1证明:
x ∈ ( A ∪ B ) C ⇒ x ∉ ( A ∪ B ) ⇒ x ∉ A 且 x ∉ B ⇒ x ∈ A C 且 x ∈ B C ⇒ x ∈ A C ∩ B C x\in(A\cup B)^C\Rightarrow x\notin(A\cup B)\Rightarrow x\notin A且x\notin B\Rightarrow x\in A^C且x\in B^C\Rightarrow x\in A^C\cap B^C x(AB)Cx/(AB)x/Ax/BxACxBCxACBC

2.3、直积或笛卡尔乘积

设A、B是任意的两个集合,在集合A中任取一元素x,在集合B中任取一元素y,组成一有序对(x,y),把这样的有序对作为新的元素,它们全体构成的集合称为集合A与集合B的直积或称笛卡尔积

记为 A × B A\times B A×B,即
A × B = { ( x , y ) ∣ x ∈ A 且 y ∈ B } A\times B=\{(x,y)|x\in A 且 y\in B\} A×B={(x,y)xAyB}

3、区间和邻域

3.1、区间

  • 有限区间: 设a和b都是实数,且 a < b a\lt b a<b

    • 开区间 ( a , b ) (a,b) (a,b),即
      ( a , b ) = { x ∣ a < x < b } (a,b)=\{x|a\lt x\lt b\} (a,b)={xa<x<b}

    • 闭区间 [ a , b ] [a,b] [a,b]
      [ a , b ] = { x ∣ a ≤ x ≤ b } [a,b]=\{x|a\le x\le b\} [a,b]={xaxb}

    • 半开区间 ( a , b ] , [ a , b ) (a,b],[a,b) (a,b],[a,b)

( a , b ] = { x ∣ a < x ≤ b } , [ a , b ) = { x ∣ a ≤ x < b } (a,b]=\{x|a\lt x\le b\},[a,b)=\{x|a\le x\lt b\} (a,b]={xa<xb},[a,b)={xax<b}

  • 无限区间:引入符号 + ∞ +\infty +(正无穷), − ∞ -\infty (负无穷)
    • ( a , + ∞ ) (a,+\infty) (a,+)
    • ( − ∞ , a ) (-\infty,a) (,a)
    • 实数集R, ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

3.2、邻域

以点a为中心的任何开区间称为点a的邻域,记做U(a)。

δ \delta δ是任意正数,则开区间 ( a − δ , a + δ ) (a-\delta,a+\delta) (aδ,a+δ)就是点a的一个邻域,这个邻域称为点a的邻域,记做 U ( a , δ ) U(a,\delta) U(a,δ),即
U ( a , δ ) = { x ∣ a − δ < x < a + δ } U(a,\delta)=\{x|a-\delta\lt x\lt a+\delta\} U(a,δ)={xaδ<x<a+δ}
点a称为邻域的中心, δ \delta δ称为邻域的半径。由于 a − δ < x < a + δ a-\delta\lt x\lt a+\delta aδ<x<a+δ相当于 ∣ x − a ∣ < δ |x-a|\lt\delta xa<δ,因此
U ( a , δ ) = { x ∣ ∣ x − a ∣ < δ } U(a,\delta)=\{x|\vert{x-a}\vert\lt\delta\} U(a,δ)={xxa<δ}
因为 ∣ x − a ∣ |x-a| xa表示点x与点a间的距离,所有 U ( a , δ ) U(a,\delta) U(a,δ)表示:与点a的距离小于 δ \delta δ的一切点x的全体。

点a的去心邻域,记做 U ( a , δ ) U(a,\delta) U(a,δ),即
U ( a , δ ) = { x ∣ 0 < ∣ x − a ∣ < δ } U(a,\delta)=\{x|0\lt \vert x-a\vert\lt\delta\} U(a,δ)={x0<xa<δ}
开区间 ( a − δ , a ) (a-\delta,a) (aδ,a)称为a的左 δ \delta δ邻域;开区间 ( a , a + δ ) (a,a+\delta) (a,a+δ)称为a的右 δ \delta δ邻域。

后记

  欢迎交流,本人QQ:806797785

项目源代码地址:https://gitee.com/gaogzhen/math
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值