1 高阶导数的定义
一般地,函数 y = f ( x ) y=f(x) y=f(x)的导数 y ′ = f ′ ( x ) y^{'}=f^{'}(x) y′=f′(x)仍然是 x x x的导数。我们把 y ′ = f ′ ( x ) y^{'}=f^{'}(x) y′=f′(x)的导数叫做函数 y = f ( x ) y=f(x) y=f(x)的二阶导数,记做 y ′ ′ 或 者 d y 2 d x 2 y^{''}或者\frac{dy^2}{dx^2} y′′或者dx2dy2;类似地,二级导数的导数,叫做三阶导数,三阶导数的导数叫做四阶导数…一般地, ( n − 1 ) (n-1) (n−1)阶导数的导数叫做n阶导数,分别记做
y ′ ′ ′ , y ( 4 ) , ⋯ , y ( n ) y^{'''},y^{(4)},\cdots,y^{(n)} y′′′,y(4),⋯,y(n)或者 d y 3 d x 3 , d y 4 d x 4 , ⋯ , d y n d x n \frac{dy^{3}}{dx^3},\frac{dy^4}{dx^4},\cdots,\frac{dy^{n}}{dx^n} dx3dy3,dx4dy4,⋯,dxndyn
二阶即二阶以上的导数统称高阶导数。
注:
- 零阶导数: f ( x ) f(x) f(x),一阶导数: f ′ f^{'} f′
- 若 f ( x ) f(x) f(x)在x处具有n阶导数,那么 f ( x ) f(x) f(x)在点x的某一邻域内必定具有一切低于n阶的导数。
- C(a,b):在开区间 ( a , b ) (a,b) (a,b)内连续的函数的集合, D ( a , b ) D(a,b) D(a,b)所有在开区间 ( a , b ) (a,b) (a,b)内可导的函数的集合。
2 高阶导数的求导
2.1 直接法
例1:求
y
=
e
λ
x
的
n
y=e^{\lambda x}的n
y=eλx的n阶导数(
λ
\lambda
λ为常数)
y
′
=
λ
e
λ
x
,
y
′
′
=
λ
2
e
λ
x
,
⋯
,
y
(
n
)
=
λ
n
e
λ
x
y^{'}=\lambda e^{\lambda}x,y^{''}=\lambda^2 e^{\lambda}x,\cdots,y^{(n)}=\lambda^{n} e^{\lambda}x
y′=λeλx,y′′=λ2eλx,⋯,y(n)=λneλx
( e x ) ( n ) = e x (e^{x})^{(n)=e^{x}} (ex)(n)=ex
( e λ x ) ( n ) = λ n e λ x (e^{\lambda x})^{(n)}=\lambda^{n} e^{\lambda}x (eλx)(n)=λneλx
例2:求
y
=
sin
ω
x
的
n
y=\sin\omega x的n
y=sinωx的n阶导数
解
:
y
′
=
ω
cos
ω
x
=
ω
sin
(
ω
x
+
π
2
)
y
′
′
=
ω
2
cos
(
ω
x
+
π
2
)
=
ω
2
sin
(
ω
x
+
2
⋅
π
2
)
.
.
.
y
(
n
)
=
ω
n
sin
(
ω
x
+
n
⋅
π
2
)
解:y^{'}=\omega\cos\omega x=\omega\sin(\omega x+\frac{\pi}{2}) \\ y^{''}=\omega^2\cos(\omega x+\frac{\pi}{2})=\omega^2\sin(\omega x+2\cdot\frac{\pi}{2}) \\ ... \\ y^{(n)}=\omega^n\sin(\omega x+n\cdot\frac{\pi}{2})
解:y′=ωcosωx=ωsin(ωx+2π)y′′=ω2cos(ωx+2π)=ω2sin(ωx+2⋅2π)...y(n)=ωnsin(ωx+n⋅2π)
( sin x ) ( n ) = sin ( x + n ⋅ π 2 ) (\sin x)^{(n)}=\sin(x+n\cdot\frac{\pi}{2}) (sinx)(n)=sin(x+n⋅2π)
( sin ω x ) ( n ) = ω n sin ( ω x + n ⋅ π 2 ) (\sin\omega x)^{(n)}=\omega^n\sin(\omega x +n\cdot\frac{\pi}{2}) (sinωx)(n)=ωnsin(ωx+n⋅2π)
( cos x ) ( n ) = cos ( x + n ⋅ π 2 ) (\cos x)^{(n)}=\cos(x+n\cdot\frac{\pi}{2}) (cosx)(n)=cos(x+n⋅2π)
( cos ω x ) ( n ) = ω n cos ( ω x + n ⋅ π 2 ) (\cos\omega x)^{(n)}=\omega^n\cos(\omega x+n\cdot\frac{\pi}{2}) (cosωx)(n)=ωncos(ωx+n⋅2π)
例3:求:
y
=
a
x
2
+
b
x
+
c
y=ax^2+bx+c
y=ax2+bx+c的一阶、二阶、三阶导数
y
′
=
2
a
x
+
b
,
y
′
′
=
2
a
,
y
′
′
′
=
0
y^{'}=2ax+b,y^{''}=2a,y^{'''}=0
y′=2ax+b,y′′=2a,y′′′=0
一般地, f ( x ) = a 0 x n + a 1 x n − 1 + . . . + a n − 1 x + a n f(x)=a_0x^n+a_1x^{n-1}+...+a^{n-1}x+a_n f(x)=a0xn+a1xn−1+...+an−1x+an
f ( n ) ( x ) = a 0 n ! , f ( n + k ) ( x ) = 0 ( k = 1 , 2 , ⋯ ) f^{(n)}(x)=a_0n!,f^{(n+k)}(x)=0(k=1,2,\cdots) f(n)(x)=a0n!,f(n+k)(x)=0(k=1,2,⋯)
幂函数 x m 的 n 阶 导 数 为 x^m的n阶导数为 xm的n阶导数为
( x m ) ( n ) = { m ( m − 1 ) ⋅ ( m − n + 1 ) x m − n , m > n n ! , m = n 0 , m < n (x^m)^{(n)}= \begin{cases} m(m-1)\cdot(m-n+1)x^{m-n} ,m\gt n \\ n!,\qquad m=n \\ 0,\qquad m\lt n \end{cases} (xm)(n)=⎩⎪⎨⎪⎧m(m−1)⋅(m−n+1)xm−n,m>nn!,m=n0,m<n
m ∈ N + m\in N^+ m∈N+
例4:求
y
=
(
x
+
c
)
μ
的
n
y=(x+c)^\mu的n
y=(x+c)μ的n阶导数。
y
′
=
μ
(
x
+
c
)
u
−
1
y
′
′
=
μ
(
μ
−
1
)
(
x
+
c
)
u
−
2
y
(
n
)
=
μ
(
μ
−
1
)
⋯
(
μ
−
n
+
1
)
(
x
+
c
)
u
−
n
(
n
=
1
,
2
,
⋯
)
y^{'}=\mu(x+c)^{u-1} \\ y^{''}=\mu(\mu-1)(x+c)^{u-2} \\ y^{(n)}=\mu(\mu-1)\cdots(\mu-n+1)(x+c)^{u-n}(n=1,2,\cdots) \\
y′=μ(x+c)u−1y′′=μ(μ−1)(x+c)u−2y(n)=μ(μ−1)⋯(μ−n+1)(x+c)u−n(n=1,2,⋯)
μ = − 1 时 , ( 1 x + c ) ( n ) = ( − 1 ) n n ! ( x + c ) n + 1 \mu=-1时,(\frac{1}{x+c})^{(n)}=\frac{(-1)^nn!}{(x+c)^{n+1}} μ=−1时,(x+c1)(n)=(x+c)n+1(−1)nn!
[ ln ( 1 + x ) ] ( n ) = ( 1 x + c ) ( n − 1 ) = ( − 1 ) n − 1 ( n − 1 ) ! ( x + 1 ) n [\ln(1+x)]^{(n)}=(\frac{1}{x+c})^{(n-1)}=\frac{(-1)^{n-1}(n-1)!}{(x+1)^n} [ln(1+x)](n)=(x+c1)(n−1)=(x+1)n(−1)n−1(n−1)!
常用高阶导数公式:
(1) ( e λ x ) ( n ) = λ n e λ x \quad(e^{\lambda x})^{(n)}=\lambda^ne^{\lambda x} (eλx)(n)=λneλx
(2) ( sin ω x ) ( n ) = ω n sin ( ω x + n ⋅ π 2 ) \quad(\sin\omega x)^{(n)}=\omega^n\sin(\omega x+n\cdot\frac{\pi}{2}) (sinωx)(n)=ωnsin(ωx+n⋅2π)
(3) ( cos ω x ) ( n ) = ω n cos ( ω x + n ⋅ π 2 ) \quad(\cos\omega x)^{(n)}=\omega^n\cos(\omega x+n\cdot\frac{\pi}{2}) (cosωx)(n)=ωncos(ωx+n⋅2π)
(4) [ ln ( 1 + x ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( x + 1 ) n x > − 1 \quad[\ln(1+x)]^{(n)}=\frac{(-1)^{n-1}(n-1)!}{(x+1)^n}\quad x\gt-1 [ln(1+x)](n)=(x+1)n(−1)n−1(n−1)!x>−1
(5) ( 1 x + 1 ) ( n ) = ( − 1 ) n n ! ( x + 1 ) n + 1 \quad(\frac{1}{x+1})^{(n)}=\frac{(-1)^nn!}{(x+1)^{n+1}} (x+11)(n)=(x+1)n+1(−1)nn!
(6) ( 1 a x + b ) ( n ) = ( − 1 ) n n ! a n ( a x + b ) n + 1 a ≠ 0 \quad(\frac{1}{ax+b})^{(n)}=\frac{(-1)^nn!a^n}{(ax+b)^{n+1}}\quad a\not=0 (ax+b1)(n)=(ax+b)n+1(−1)nn!ana=0
2.2 间接法
高阶导数的运算法则:
设 u = u ( x ) , v = v ( x ) 具 有 n 阶 导 数 , 则 u=u(x),v=v(x)具有n阶导数,则 u=u(x),v=v(x)具有n阶导数,则
(1) ( u ± v ) ( n ) = u ( n ) ± v ( n ) \quad(u\pm v)^{(n)}=u^{(n)}\pm v^{(n)} (u±v)(n)=u(n)±v(n)
(2) ( C u ) ( n ) = C u ( n ) , ( C ∈ R ) \quad(Cu)^{(n)}=Cu^{(n)},(C\in R) (Cu)(n)=Cu(n),(C∈R)
(3) ( u v ) ( n ) = C n 0 u ( n ) v ( 0 ) + C n 1 u ( n − 1 ) v ( 1 ) + ⋯ + C n k u ( n − k ) v ( k ) + ⋯ + C n n u ( 0 ) v ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) \quad (uv)^{(n)}=C^0_nu^{(n)}v^{(0)}+C^1_nu^{(n-1)}v^{(1)}+\cdots+C^k_nu^{(n-k)}v^{(k)}+\cdots+C^n_nu^{(0)}v^{(n)}=\displaystyle\sum_{k=0}^n{C^k_nu^{(n-k)}v^{(k)}} (uv)(n)=Cn0u(n)v(0)+Cn1u(n−1)v(1)+⋯+Cnku(n−k)v(k)+⋯+Cnnu(0)v(n)=k=0∑nCnku(n−k)v(k)
(3)式被称为莱布尼茨公式
间接法就是利用高阶导数的运算法则及高阶导数的公式,通过适当的变形来求高阶导数的方法。
例6:求
y
=
x
x
2
−
1
的
n
y=\frac{x}{x^2-1}的n
y=x2−1x的n阶导数。
y
=
x
x
2
−
1
=
1
2
(
1
x
−
1
+
1
x
+
1
)
y
(
n
)
=
1
2
(
1
x
−
1
+
1
x
+
1
)
(
n
)
=
1
2
[
(
1
x
−
1
)
(
n
)
+
1
x
+
1
)
(
n
)
]
=
1
2
[
(
−
1
)
n
n
!
(
x
−
1
)
n
+
1
+
(
−
1
)
n
n
!
(
x
+
1
)
n
+
1
]
=
(
−
1
)
n
n
!
2
[
1
(
x
−
1
)
n
+
1
+
1
(
x
+
1
)
n
+
1
]
y=\frac{x}{x^2-1}=\frac{1}{2}(\frac{1}{x-1}+\frac{1}{x+1}) \\ y^{(n)}=\frac{1}{2}(\frac{1}{x-1}+\frac{1}{x+1})^{(n)}=\frac{1}{2}[(\frac{1}{x-1})^{(n)}+\frac{1}{x+1})^{(n)}] \\ =\frac{1}{2}[\frac{(-1)^nn!}{(x-1)^{n+1}}+\frac{(-1)^nn!}{(x+1)^{n+1}}]=\frac{(-1)^nn!}{2}[\frac{1}{(x-1)^{n+1}}+\frac{1}{(x+1)^{n+1}}]
y=x2−1x=21(x−11+x+11)y(n)=21(x−11+x+11)(n)=21[(x−11)(n)+x+11)(n)]=21[(x−1)n+1(−1)nn!+(x+1)n+1(−1)nn!]=2(−1)nn![(x−1)n+11+(x+1)n+11]
例7:设
y
=
sin
6
x
+
cos
6
x
,
求
y
(
n
)
y=\sin^6x+\cos^6x,求y^{(n)}
y=sin6x+cos6x,求y(n)
如
果
直
接
计
算
的
话
会
很
复
杂
,
那
么
我
们
尝
试
先
化
简
y
=
sin
6
x
+
cos
6
x
=
(
sin
2
x
+
cos
2
x
)
(
sin
4
x
+
sin
2
x
cos
2
x
+
cos
4
x
)
=
(
sin
2
x
+
cos
2
x
)
2
−
3
sin
2
x
cos
2
x
=
1
−
3
4
(
−
1
2
cos
4
x
−
1
)
=
7
8
+
3
8
c
o
s
4
x
y
(
n
)
=
(
7
8
+
3
8
c
o
s
4
x
)
(
n
)
=
3
8
4
n
cos
(
4
x
+
n
⋅
π
2
)
如果直接计算的话会很复杂,那么我们尝试先化简 \\ y=\sin^6x+\cos^6x=(\sin^2x+\cos^2x)(\sin^4x+\sin^2x\cos^2x+\cos^4x) \\ =(\sin^2x+\cos^2x)^2-3\sin^2x\cos^2x=1-\frac{3}{4}(-\frac{1}{2}\cos4x-1) \\ =\frac{7}{8}+\frac{3}{8}cos4x \\ y^{(n)}=(\frac{7}{8}+\frac{3}{8}cos4x)^{(n)}=\frac{3}{8}4^n\cos(4x+n\cdot\frac{\pi}{2})
如果直接计算的话会很复杂,那么我们尝试先化简y=sin6x+cos6x=(sin2x+cos2x)(sin4x+sin2xcos2x+cos4x)=(sin2x+cos2x)2−3sin2xcos2x=1−43(−21cos4x−1)=87+83cos4xy(n)=(87+83cos4x)(n)=834ncos(4x+n⋅2π)
例8:求
y
=
x
2
e
−
x
的
10
y=x^2e^{-x}的10
y=x2e−x的10阶导数
y
(
10
)
=
(
x
2
e
−
x
)
(
10
)
=
∑
k
=
0
n
(
x
2
)
(
k
)
(
e
−
x
)
(
n
−
k
)
=
C
10
0
x
2
(
e
−
x
)
(
10
)
+
C
10
1
(
x
2
)
′
(
e
−
x
)
(
9
)
+
C
10
2
(
x
2
)
′
′
(
e
−
x
)
(
8
)
=
x
2
(
e
−
x
)
−
10
⋅
2
x
(
e
−
x
)
+
45
⋅
2
(
e
−
x
)
=
e
−
x
(
x
2
−
20
x
+
90
)
y^{(10)}=(x^2e^{-x})^{(10)}=\displaystyle\sum_{k=0}^n(x^2)^{(k)}(e^{-x})^{(n-k)} \\ =C_{10}^0x^2(e^{-x})^{(10)}+C_{10}^1(x^2)^{'}(e^{-x})^{(9)}+C_{10}^2(x^2)^{''}(e^{-x})^{(8)} \\ =x^2(e^{-x})-10\cdot2x(e^{-x})+45\cdot2(e^{-x})=e^{-x}(x^2-20x+90)
y(10)=(x2e−x)(10)=k=0∑n(x2)(k)(e−x)(n−k)=C100x2(e−x)(10)+C101(x2)′(e−x)(9)+C102(x2)′′(e−x)(8)=x2(e−x)−10⋅2x(e−x)+45⋅2(e−x)=e−x(x2−20x+90)
注:莱布尼茨公式适用范围
- 求两个函数乘积的高阶导数
- 一般地,其中有一个函数是幂函数/多项式函数
例9:设
y
=
arctan
x
,
求
y
(
n
)
(
0
)
,
(
n
>
1
)
y=\arctan x,求y^{(n)}(0),(n\gt1)
y=arctanx,求y(n)(0),(n>1)
直
接
求
n
阶
导
数
很
复
杂
,
先
求
一
阶
导
数
y
′
=
1
x
2
+
1
→
y
′
(
x
2
+
1
)
=
1
等
式
左
侧
为
2
个
关
于
x
的
函
数
乘
积
形
式
,
其
他
一
个
为
多
项
式
。
[
y
′
(
x
2
+
1
)
]
(
n
−
1
)
=
0
C
n
−
1
0
(
x
2
+
1
)
y
(
n
)
+
C
n
−
1
1
(
x
2
+
1
)
′
y
(
n
−
1
)
+
C
n
−
1
2
(
x
2
+
1
)
′
′
y
(
n
−
2
)
=
(
x
2
+
1
)
y
(
n
)
+
(
n
−
1
)
2
x
y
(
n
−
1
)
+
(
n
−
1
)
(
n
−
2
)
y
(
n
−
2
)
=
0
把
x
=
0
带
入
:
y
(
n
)
(
0
)
=
−
(
n
−
1
)
(
n
−
2
)
y
(
n
−
2
)
(
0
)
y
′
(
0
)
=
1
,
y
′
′
(
0
)
=
0
因
此
y
(
n
)
(
0
)
=
{
0
,
n
=
2
k
,
(
−
1
)
k
(
2
k
)
!
,
n
=
2
k
+
1
(
k
=
0
,
1
,
2
,
⋯
)
直接求n阶导数很复杂,先求一阶导数 \\ y^{'}=\frac{1}{x^2+1}\rightarrow y^{'}(x^2+1)=1 \\ 等式左侧为2个关于x的函数乘积形式,其他一个为多项式。 \\ [y^{'}(x^2+1)]^{(n-1)}=0 \\ C_{n-1}^0(x^2+1)y^{(n)}+C_{n-1}^1(x^2+1)^{'}y^{(n-1)}+C_{n-1}^2(x^2+1)^{''}y^{(n-2)} \\ =(x^2+1)y^{(n)}+(n-1)2xy^{(n-1)}+(n-1)(n-2)y^{(n-2)}=0 \\ 把x=0带入: y^{(n)}(0)=-(n-1)(n-2)y^{(n-2)}(0) \\ y^{'}(0)=1,y^{''}(0)=0 因此 \\ y^{(n)}(0)= \begin{cases} 0,\quad n=2k, \\ (-1)^k(2k)!,n=2k+1(k=0,1,2,\cdots) \end{cases}
直接求n阶导数很复杂,先求一阶导数y′=x2+11→y′(x2+1)=1等式左侧为2个关于x的函数乘积形式,其他一个为多项式。[y′(x2+1)](n−1)=0Cn−10(x2+1)y(n)+Cn−11(x2+1)′y(n−1)+Cn−12(x2+1)′′y(n−2)=(x2+1)y(n)+(n−1)2xy(n−1)+(n−1)(n−2)y(n−2)=0把x=0带入:y(n)(0)=−(n−1)(n−2)y(n−2)(0)y′(0)=1,y′′(0)=0因此y(n)(0)={0,n=2k,(−1)k(2k)!,n=2k+1(k=0,1,2,⋯)
3 后记
❓QQ:806797785
⭐️文档笔记地址:https://gitee.com/gaogzhen/math
参考:
[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P96~p100.
[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p15.