0405习题总结-不定积分

1 不定积分的基本概念

例1
f ( x ) = { x + 1 , x ≥ 0 1 2 e − x + 1 2 , x < 0 求 ∫ f ( x ) d x f(x)= \begin{cases} x+1,\quad x\ge0\\ \frac{1}{2}e^{-x}+\frac{1}{2},\quad x\lt0\\ \end{cases}\\ 求\int{f(x)dx} f(x)={x+1,x021ex+21,x<0f(x)dx

解: f ( x ) 在 ( − ∞ , + ∞ ) 上连续 ∫ f ( x ) d x = { 1 2 x 2 + x + C 1 , x ≥ 0 , C 1 为任意常数 − 1 2 e − x + 1 2 x + C 2 , x < 0 , C 2 为任意常数 F ( x ) 作为 f ( x ) 的一个原函数,在 x = 0 处连续 那么 C 1 = − 1 2 + C 2 , 令 C 2 = C ( 任意常数 ) , 则 C 1 = − 1 2 + C ∫ f ( x ) d x = { 1 2 x 2 + x − 1 2 + C , x ≥ 0 , C 为任意常数 − 1 2 e − x + 1 2 x + C , x < 0 解:f(x)在(-\infty,+\infty)上连续\\ \int{f(x)dx}= \begin{cases} \frac{1}{2}x^2+x+C_1,\quad x\ge0,C_1为任意常数\\ -\frac{1}{2}e^{-x}+\frac{1}{2}x+C_2,\quad x\lt0,C_2为任意常数\\ \end{cases}\\ F(x)作为f(x)的一个原函数,在x=0处连续\\ 那么C_1=-\frac{1}{2}+C_2,令C_2=C(任意常数),则C_1=-\frac{1}{2}+C\\ \int{f(x)dx}= \begin{cases} \frac{1}{2}x^2+x-\frac{1}{2}+C,\quad x\ge0,C为任意常数\\ -\frac{1}{2}e^{-x}+\frac{1}{2}x+C,\quad x\lt0\\ \end{cases}\\ 解:f(x)(,+)上连续f(x)dx={21x2+x+C1,x0C1为任意常数21ex+21x+C2,x<0,C2为任意常数F(x)作为f(x)的一个原函数,在x=0处连续那么C1=21+C2,C2=C(任意常数),C1=21+Cf(x)dx={21x2+x21+C,x0C为任意常数21ex+21x+C,x<0

注意:

  1. f ( x ) f(x) f(x)连续,F(x)可导。
  2. f ( x ) f(x) f(x)有第一类,第二类无穷间断点,则不存在原函数。
  3. f ( x ) f(x) f(x)有第二类震荡间断点时,可能存在原函数。

例2 ∫ m a x { x 3 , x 2 , 1 } d x \int{max\{x^3,x^2,1\}dx} max{x3,x2,1}dx
解:令 f ( x ) = m a x { x 3 , x 2 , 1 } , 则 f ( x ) = { x 2 , x ≤ − 1 1 , − 1 < x < 1 x 3 , x ≥ 1 f ( x ) 在 ( − ∞ , + ∞ ) 上连续 ∫ f ( x ) = { 1 3 x 3 + C 1 , x ≤ − 1 x + C , − 1 < x < 1 1 4 x 4 + C 2 , x ≥ 1 F ( x ) 在点 x = − 1 出连续,所以 − 1 3 + C 1 = − 1 + C , 则 C 1 = − 2 3 + C F ( x ) 在点 x = 1 出连续,所以 1 4 + C 2 = 1 + C , 则 C 2 = 3 4 + C ∫ f ( x ) = { 1 3 x 3 − 2 3 + C , x ≤ − 1 x + C , − 1 < x < 1 1 4 x 4 + 3 4 + C , x ≥ 1 解:令f(x)=max\{x^3,x^2,1\},则\\ f(x)= \begin{cases} x^2,\quad x\le -1\\ 1,\quad -1\lt x\lt1\\ x^3,\quad x\ge1 \end{cases}\\ f(x)在(-\infty,+\infty)上连续\\ \int{f(x)}= \begin{cases} \frac{1}{3}x^3+C_1,\quad x\le -1\\ x+C,\quad -1\lt x\lt1\\ \frac{1}{4}x^4+C_2,\quad x\ge1 \end{cases}\\ F(x)在点x=-1出连续,所以-\frac{1}{3}+C_1=-1+C,则C_1=-\frac{2}{3}+C\\ F(x)在点x=1出连续,所以\frac{1}{4}+C_2=1+C,则C_2=\frac{3}{4}+C\\ \int{f(x)}= \begin{cases} \frac{1}{3}x^3-\frac{2}{3}+C,\quad x\le -1\\ x+C,\quad -1\lt x\lt1\\ \frac{1}{4}x^4+\frac{3}{4}+C,\quad x\ge1 \end{cases}\\ 解:令f(x)=max{x3,x2,1},f(x)= x2,x11,1<x<1x3,x1f(x)(,+)上连续f(x)= 31x3+C1,x1x+C,1<x<141x4+C2,x1F(x)在点x=1出连续,所以31+C1=1+C,C1=32+CF(x)在点x=1出连续,所以41+C2=1+C,C2=43+Cf(x)= 31x332+C,x1x+C,1<x<141x4+43+C,x1
总结:分段函数求积分

  1. 确定在分段点连续
  2. 求分段积分
  3. 统一常数

例3 证明:函数 arcsin ⁡ ( 2 x − 1 ) , arccos ⁡ ( 1 − 2 x ) , arctan ⁡ x 1 − x 都是 1 x − x 2 \arcsin(2x-1),\arccos(1-2x),\arctan\sqrt{\frac{x}{1-x}}都是\frac{1}{\sqrt{x-x^2}} arcsin(2x1),arccos(12x),arctan1xx 都是xx2 1的原函数
证明:通过原函数求导函数即可 [ arcsin ⁡ ( 2 x − 1 ) ] ′ = 1 1 − ( 2 x − 1 ) 2 ⋅ 2 = 1 x − x 2 [ arccos ⁡ ( 1 − 2 x ) ] ′ = − 1 1 − ( 1 − 2 x ) 2 ⋅ − 2 = 1 x − x 2 [ arctan ⁡ x 1 − x ] ′ = 1 1 + x 1 − x ⋅ ( x 1 − x ) ′ = 1 x − x 2 证明:通过原函数求导函数即可\\ [\arcsin(2x-1)]^{'}=\frac{1}{\sqrt{1-(2x-1)^2}}\cdot2=\frac{1}{\sqrt{x-x^2}}\\ [\arccos(1-2x)]^{'}=-\frac{1}{\sqrt{1-(1-2x)^2}}\cdot-2=\frac{1}{\sqrt{x-x^2}}\\ [\arctan\sqrt{\frac{x}{1-x}}]^{'}=\frac{1}{1+\frac{x}{1-x}}\cdot(\sqrt{\frac{x}{1-x}})^{'}=\frac{1}{\sqrt{x-x^2}} 证明:通过原函数求导函数即可[arcsin(2x1)]=1(2x1)2 12=xx2 1[arccos(12x)]=1(12x)2 12=xx2 1[arctan1xx ]=1+1xx1(1xx )=xx2 1

2 直接积分法-基本积分公式

例1 ∫ x 4 1 + x 2 d x \int{\frac{x^4}{1+x^2}dx} 1+x2x4dx

多项式除法
解: ∫ x 4 1 + x 2 d x = ∫ ( x 2 − 1 + 1 1 + x 2 ) d x = 1 3 x 3 − x + arctan ⁡ x + C 解:\int{\frac{x^4}{1+x^2}dx}=\int{(x^2-1+\frac{1}{1+x^2})dx}\\ =\frac{1}{3}x^3-x+\arctan x+C 解:1+x2x4dx=(x21+1+x21)dx=31x3x+arctanx+C
例2 求 ∫ 1 x 8 ( 1 + x 2 ) d x \int{\frac{1}{x^8(1+x^2)}dx} x8(1+x2)1dx

高次多项式与低次多项式+常数乘积
解: ∫ 1 x 8 ( 1 + x 2 ) d x = ∫ 1 − x 8 + x 8 x 8 ( 1 + x 2 ) d x = ∫ ( 1 + x 4 ) ( 1 − x 2 ) x 8 d x + ∫ 1 1 + x 2 d x = 1 x − 1 3 x 3 + 1 5 x 5 − 1 7 x 7 + arctan ⁡ x + C 解:\int{\frac{1}{x^8(1+x^2)}dx}=\int{\frac{1-x^8+x^8}{x^8(1+x^2)}dx}\\ =\int{\frac{(1+x^4)(1-x^2)}{x^8}dx}+\int{\frac{1}{1+x^2}dx}\\ =\frac{1}{x}-\frac{1}{3x^3}+\frac{1}{5x^5}-\frac{1}{7x^7}+\arctan x+C 解:x8(1+x2)1dx=x8(1+x2)1x8+x8dx=x8(1+x4)(1x2)dx+1+x21dx=x13x31+5x517x71+arctanx+C
例3 求 ∫ tan ⁡ 2 x d x \int{\tan^2xdx} tan2xdx
解: ∫ tan ⁡ 2 x d x = ∫ ( sec ⁡ 2 x − 1 ) d x = tan ⁡ x − x + C 解:\int{\tan^2xdx}=\int{(\sec^2x-1)dx}=\tan x-x+C 解:tan2xdx=(sec2x1)dx=tanxx+C
例4 求 ∫ 1 1 + cos ⁡ 2 x d x \int{\frac{1}{1+\cos2x}dx} 1+cos2x1dx
解: ∫ 1 1 + cos ⁡ 2 x d x = ∫ 1 2 cos ⁡ 2 x d x = 1 2 tan ⁡ x + C 解:\int{\frac{1}{1+\cos2x}dx}=\int{\frac{1}{2\cos^2x}dx}\\ =\frac{1}{2}\tan x+C 解:1+cos2x1dx=2cos2x1dx=21tanx+C
例5 求 ∫ 1 sin ⁡ 2 x cos ⁡ 2 x d x \int{\frac{1}{\sin^2x\cos^2x}dx} sin2xcos2x1dx
解 : ∫ 1 sin ⁡ 2 x cos ⁡ 2 x d x = ∫ sin ⁡ 2 x + cos ⁡ 2 x sin ⁡ 2 x cos ⁡ 2 x d x = ∫ sec ⁡ 2 x d x + ∫ csc ⁡ 2 x d x = tan ⁡ x − cot ⁡ x + C 解:\int{\frac{1}{\sin^2x\cos^2x}dx}=\int{\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}dx}\\ =\int{\sec^2xdx}+\int{\csc^2xdx}=\tan x-\cot x+C :sin2xcos2x1dx=sin2xcos2xsin2x+cos2xdx=sec2xdx+csc2xdx=tanxcotx+C

3 第一换元法-凑微分形式法

∫ { f [ g ( x ) ] g ′ ( x ) d x } = [ ∫ f ( t ) d t ] t = g ( x ) \int{\{f[g(x)]g^{'}(x)dx\}}=[\int{f(t)dt}]_{t=g(x)} {f[g(x)]g(x)dx}=[f(t)dt]t=g(x)

常见凑微分公式:

  • ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) \int{f(ax+b)dx}=\frac{1}{a}\int{f(ax+b)d(ax+b)} f(ax+b)dx=a1f(ax+b)d(ax+b)

  • ∫ f ( e x ) e x d x = ∫ f ( e x ) d e x \int{f(e^x)e^xdx}=\int{f(e^x)de^x} f(ex)exdx=f(ex)dex ∫ f ( a x ) a x d x = 1 ln ⁡ a ∫ f ( a x ) d a x \quad \int{f(a^x)a^xdx}=\frac{1}{\ln a}\int{f(a^x)da^x} f(ax)axdx=lna1f(ax)dax

  • ∫ f ( x μ ) x μ − 1 d x = 1 μ ∫ f ( x μ ) d ( x μ ) \int{f(x^\mu)x^{\mu-1}dx}=\frac{1}{\mu}\int{f(x^\mu)d(x^\mu)} f(xμ)xμ1dx=μ1f(xμ)d(xμ)

  • ∫ f ( 1 x ) 1 x 2 d x = − ∫ f ( 1 x ) d ( 1 x ) \int{f(\frac{1}{x})\frac{1}{x^2}dx}=-\int{f(\frac{1}{x})d(\frac{1}{x}}) f(x1)x21dx=f(x1)d(x1)

  • ∫ f ( x ) 1 x d x = 2 ∫ f ( x ) d ( x ) \int{f(\sqrt{x})\frac{1}{\sqrt{x}}dx}=2\int{f(\sqrt{x})d(\sqrt{x})} f(x )x 1dx=2f(x )d(x )

  • ∫ f ( ln ⁡ x ) 1 x d x = ∫ f ( ln ⁡ x ) d ( ln ⁡ x ) ∫ f ( x ln ⁡ x ) ( 1 + ln ⁡ x ) d x = ∫ f ( x ln ⁡ x ) d ( x ln ⁡ x ) \int{f(\ln x)\frac{1}{x}dx}=\int{f(\ln x)d(\ln x)}\quad \int{f(x\ln x)(1+\ln x)dx}=\int{f(x\ln x)d(x\ln x)} f(lnx)x1dx=f(lnx)d(lnx)f(xlnx)(1+lnx)dx=f(xlnx)d(xlnx)

  • 三角函数凑微分

    • ∫ f ( sin ⁡ x ) cos ⁡ x d x = ∫ f ( sin ⁡ x ) d ( sin ⁡ x ) \int{f(\sin x)\cos xdx}=\int{f(\sin x)d(\sin x)} f(sinx)cosxdx=f(sinx)d(sinx)
    • ∫ f ( cos ⁡ x ) sin ⁡ x d x = − ∫ f ( cos ⁡ x ) d ( cos ⁡ x ) \int{f(\cos x)\sin xdx}=-\int{f(\cos x)d(\cos x)} f(cosx)sinxdx=f(cosx)d(cosx)
    • ∫ f ( tan ⁡ x ) sec ⁡ 2 x d x = ∫ f ( tan ⁡ x ) d ( tan ⁡ x ) \int{f(\tan x)\sec^2xdx}=\int{f(\tan x)d(\tan x)} f(tanx)sec2xdx=f(tanx)d(tanx)
    • ∫ f ( cot ⁡ x ) csc ⁡ 2 x d x = − ∫ f ( cot ⁡ x ) d ( cot ⁡ x ) \int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d(\cot x)} f(cotx)csc2xdx=f(cotx)d(cotx)
    • ∫ f ( sec ⁡ x ) sec ⁡ x tan ⁡ x d x = ∫ f ( sec ⁡ x ) d ( sec ⁡ x ) \int{f(\sec x)\sec x\tan xdx}=\int{f(\sec x)d(\sec x)} f(secx)secxtanxdx=f(secx)d(secx)
    • ∫ f ( csc ⁡ x ) csc ⁡ x cot ⁡ x d x = − ∫ f ( csc ⁡ x ) d ( csc ⁡ x ) \int{f(\csc x)\csc x\cot xdx}=-\int{f(\csc x)d(\csc x)} f(cscx)cscxcotxdx=f(cscx)d(cscx)
  • 反三角函数

    • ∫ f ( arctan ⁡ x ) 1 1 + x 2 d x = ∫ f ( arctan ⁡ x ) d ( arctan ⁡ x ) \int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)} f(arctanx)1+x21dx=f(arctanx)d(arctanx)
    • ∫ f ( a r c c o t x ) 1 1 + x 2 d x = − ∫ f ( a r c c o t x ) d ( a r c c o t x ) \int{f(arccot x)\frac{1}{1+x^2}dx}=-\int{f(arccot x)d(arccot x)} f(arccotx)1+x21dx=f(arccotx)d(arccotx)
    • ∫ f ( arcsin ⁡ x ) 1 1 − x 2 d x = ∫ f ( arcsin ⁡ x ) d ( arcsin ⁡ x ) \int{f(\arcsin x)\frac{1}{\sqrt{1-x^2}}dx}=\int{f(\arcsin x)d(\arcsin x)} f(arcsinx)1x2 1dx=f(arcsinx)d(arcsinx)
    • ∫ f ( arccos ⁡ x ) 1 1 − x 2 d x = − ∫ f ( arccos ⁡ x ) d ( arccos ⁡ x ) \int{f(\arccos x)\frac{1}{\sqrt{1-x^2}}dx}=-\int{f(\arccos x)d(\arccos x)} f(arccosx)1x2 1dx=f(arccosx)d(arccosx)
  • ∫ f ( x + 1 x ) ( 1 − 1 x 2 ) d x = ∫ f ( x + 1 x ) d ( x + 1 x ) ∫ f ( x − 1 x ) ( 1 + 1 x 2 ) d x = ∫ f ( x − 1 x ) d ( x − 1 x ) \int{f(x+\frac{1}{x})(1-\frac{1}{x^2})dx}=\int{f(x+\frac{1}{x})d(x+\frac{1}{x})}\quad \int{f(x-\frac{1}{x})(1+\frac{1}{x^2})dx}=\int{f(x-\frac{1}{x})d(x-\frac{1}{x})} f(x+x1)(1x21)dx=f(x+x1)d(x+x1)f(xx1)(1+x21)dx=f(xx1)d(xx1)

例1 ∫ tan ⁡ 5 x s e c 3 x d x \int{\tan^5xsec^3xdx} tan5xsec3xdx
解: ∫ tan ⁡ 5 x s e c 3 x d x = ∫ ( s e c 2 x − 1 ) 2 s e c 2 x d ( s e c x ) = ∫ ( s e c 6 x − 2 s e c 4 x + s e c 2 x ) d ( s e c x ) = 1 7 s e c 7 x − 2 5 s e c 5 x + 1 3 s e c 3 x + C 解:\int{\tan^5xsec^3xdx}=\int{(sec^2x-1)^2sec^2xd(secx)}\\ =\int{(sec^6x-2sec^4x+sec^2x)d(secx)}=\frac{1}{7}sec^7x-\frac{2}{5}sec^5x+\frac{1}{3}sec^3x+C 解:tan5xsec3xdx=(sec2x1)2sec2xd(secx)=(sec6x2sec4x+sec2x)d(secx)=71sec7x52sec5x+31sec3x+C
例2 ∫ ln ⁡ ( 1 + x ) − ln ⁡ x x ( 1 + x ) d x \int{\frac{\ln(1+x)-\ln x}{x(1+x)}dx} x(1+x)ln(1+x)lnxdx
解: ∫ ln ⁡ ( 1 + x ) − ln ⁡ x x ( 1 + x ) d x = − ∫ [ ln ⁡ ( 1 + x ) − ln ⁡ x ] d [ ln ⁡ ( 1 + x ) − ln ⁡ x ] = − 1 2 [ ln ⁡ ( 1 + x ) − ln ⁡ x ] 2 + C 解:\int{\frac{\ln(1+x)-\ln x}{x(1+x)}dx}=-\int{[\ln(1+x)-\ln x]d[\ln(1+x)-\ln x]}\\ =-\frac{1}{2}[\ln(1+x)-\ln x]^2+C 解:x(1+x)ln(1+x)lnxdx=[ln(1+x)lnx]d[ln(1+x)lnx]=21[ln(1+x)lnx]2+C
例3 ∫ ( 1 + 2 x 2 ) e x 2 2 − 3 x e x 2 d x \int{\frac{(1+2x^2)e^{x^2}}{2-3xe^{x^2}}dx} 23xex2(1+2x2)ex2dx
解: ∫ ( 1 + 2 x 2 ) e x 2 2 − 3 x e x 2 d x = − 1 3 ∫ 1 2 − 3 x e x 2 d ( 2 − 3 x e x 2 ) = − 1 3 ln ⁡ ∣ 2 − 3 x e x 2 ∣ + C 解:\int{\frac{(1+2x^2)e^{x^2}}{2-3xe^{x^2}}dx}=-\frac{1}{3}\int{\frac{1}{2-3xe^{x^2}}d(2-3xe^{x^2})}=-\frac{1}{3}\ln|2-3xe^{x^2}|+C 解:23xex2(1+2x2)ex2dx=3123xex21d(23xex2)=31ln∣23xex2+C
例4 ∫ e arctan ⁡ 1 + x ( 2 + x ) 1 + x d x \int{\frac{e^{\arctan\sqrt{1+x}}}{(2+x)\sqrt{1+x}}dx} (2+x)1+x earctan1+x dx
解: ∫ e arctan ⁡ 1 + x ( 2 + x ) 1 + x d x = 2 ∫ e arctan ⁡ 1 + x d ( arctan ⁡ 1 + x ) = 2 e arctan ⁡ 1 + x + C 解:\int{\frac{e^{\arctan\sqrt{1+x}}}{(2+x)\sqrt{1+x}}dx}=2\int{e^{\arctan\sqrt{1+x}}d(\arctan\sqrt{1+x})}\\ =2e^{\arctan\sqrt{1+x}}+C 解:(2+x)1+x earctan1+x dx=2earctan1+x d(arctan1+x )=2earctan1+x +C
例5 ∫ ln ⁡ tan ⁡ x 2 sin ⁡ x d x \int{\frac{\ln\tan\frac{x}{2}}{\sin x}dx} sinxlntan2xdx
解: ∫ ln ⁡ tan ⁡ x 2 sin ⁡ x d x = ∫ ln ⁡ tan ⁡ x 2 d ( ln ⁡ tan ⁡ x 2 ) = 1 2 ln ⁡ 2 tan ⁡ x 2 + C 解:\int{\frac{\ln\tan\frac{x}{2}}{\sin x}dx}=\int{\ln\tan\frac{x}{2}d(\ln\tan\frac{x}{2})}\\ =\frac{1}{2}\ln^2\tan\frac{x}{2}+C 解:sinxlntan2xdx=lntan2xd(lntan2x)=21ln2tan2x+C

4 第二类换元法

∫ f ( x ) d x = [ ∫ [ f ( ϕ ( t ) ) ] ϕ ′ ( t ) d t ] t = ϕ − 1 ( x ) \int{f(x)dx}=[\int{[f(\phi(t))]\phi^{'}(t)dt}]_{t=\phi^{-1}(x)} f(x)dx=[[f(ϕ(t))]ϕ(t)dt]t=ϕ1(x)

  • 三大换元
    1. 三角换元
      • 被积函数含有 a 2 − x 2 \sqrt{a^2-x^2} a2x2 :令 x = a sin ⁡ t x=a\sin t x=asint
      • 被积函数含有 x 2 + a 2 \sqrt{x^2+a^2} x2+a2 :令 x = a tan ⁡ t x=a\tan t x=atant
      • 被积函数含有 x 2 − a 2 \sqrt{x^2-a^2} x2a2 :令 x = a sec ⁡ t x=a\sec t x=asect
      • 当被积函数含有 ( x 2 + a 2 ) n (x^2+a^2)^n (x2+a2)n也考虑 x = a tan ⁡ t x=a\tan t x=atant
      • 当被积函数含有 ( x 2 − a 2 ) n (x^2-a^2)^n (x2a2)n也考虑 x = a sec ⁡ t x=a\sec t x=asect
    2. 根式代换
      • 被积函数含有 a x + b c x + d n : 令 a x + b c x + d n = t \sqrt[n]{\frac{ax+b}{cx+d}}:令\sqrt[n]{\frac{ax+b}{cx+d}}=t ncx+dax+b :ncx+dax+b =t
      • 被积函数含有 a x + b n : 令 a x + b n = t \sqrt[n]{ax+b}:令\sqrt[n]{ax+b}=t nax+b :nax+b =t
      • 被积函数含有 a x + b n , a x + b m : 令 a x + b k = t , k 为 m , n 的最小公倍数 \sqrt[n]{ax+b},\sqrt[m]{ax+b}:令\sqrt[k]{ax+b}=t,k为m,n的最小公倍数 nax+b max+b :kax+b =t,kmn的最小公倍数
    3. 倒代换
      1. 当分母方次高于分子方次,可以考虑倒代换。

例1 求 ∫ 1 ( 1 + x 2 ) 2 d x \int{\frac{1}{(1+x^2)^2}dx} (1+x2)21dx
解:解法一 . ∫ 1 ( 1 + x 2 ) 2 d x = ∫ 1 + x 2 − x 2 ( 1 + x 2 ) 2 d x = arctan ⁡ x + 1 2 ∫ x d ( 1 1 + x 2 ) = = arctan ⁡ x + 1 2 x 1 + x 2 − 1 2 ∫ ( 1 1 + x 2 ) d x = 1 2 arctan ⁡ x + x 2 ( 1 + x 2 ) + C 解法二 . 令 x = tan ⁡ x ∫ 1 ( 1 + x 2 ) 2 d x = ∫ 1 ( 1 + tan ⁡ 2 x ) 2 d tan ⁡ x = ∫ cos ⁡ 2 t d t = 1 4 sin ⁡ t cos ⁡ t − 1 2 t + C = 1 2 arctan ⁡ x + x 2 ( 1 + x 2 ) + C 解:解法一.\int{\frac{1}{(1+x^2)^2}dx}=\int{\frac{1+x^2-x^2}{(1+x^2)^2}dx}\\ =\arctan x+\frac{1}{2}\int{xd(\frac{1}{1+x^2})}=\\ =\arctan x+\frac{1}{2}\frac{x}{1+x^2}-\frac{1}{2}\int{(\frac{1}{1+x^2})dx}\\ =\frac{1}{2}\arctan x+\frac{x}{2(1+x^2)}+C\\ 解法二.令x=\tan x\\ \int{\frac{1}{(1+x^2)^2}dx}=\int{\frac{1}{(1+\tan^2x)^2}d\tan x}\\ =\int{\cos^2tdt}=\frac{1}{4}\sin t\cos t-\frac{1}{2}t+C =\frac{1}{2}\arctan x+\frac{x}{2(1+x^2)}+C 解:解法一.(1+x2)21dx=(1+x2)21+x2x2dx=arctanx+21xd(1+x21)==arctanx+211+x2x21(1+x21)dx=21arctanx+2(1+x2)x+C解法二.x=tanx(1+x2)21dx=(1+tan2x)21dtanx=cos2tdt=41sintcost21t+C=21arctanx+2(1+x2)x+C
例2 求 ∫ 1 ( a x 2 + b ) n d x , n > 1 , a > 0 \int{\frac{1}{(ax^2+b)^n}dx},n>1,a>0 (ax2+b)n1dx,n>1,a>0
解: ∫ 1 ( a x 2 + b ) n d x = 1 b ∫ 1 ( a x 2 + b ) n − 1 d x + 1 2 b ( n − 1 ) ∫ x d 1 ( a x 2 + b ) n − 1 = 2 b n − 2 b − 2 2 b ( n − 1 ) ∫ 1 ( a x 2 + b ) n − 1 d x + x 2 b ( n − 1 ) ( x 2 + 1 ) n − 1 解:\int{\frac{1}{(ax^2+b)^n}dx}=\frac{1}{b}\int{\frac{1}{(ax^2+b)^{n-1}}dx}+\frac{1}{2b(n-1)}\int{xd{\frac{1}{(ax^2+b)^{n-1}}}}\\ =\frac{2bn-2b-2}{2b(n-1)}\int{\frac{1}{(ax^2+b)^{n-1}}dx}+\frac{x}{2b(n-1)(x^2+1)^{n-1}} 解:(ax2+b)n1dx=b1(ax2+b)n11dx+2b(n1)1xd(ax2+b)n11=2b(n1)2bn2b2(ax2+b)n11dx+2b(n1)(x2+1)n1x

例3 求 ∫ 1 x + x 3 d x \int{\frac{1}{\sqrt{x}+\sqrt[3]{x}}dx} x +3x 1dx
解:令 x 6 = t , 则 x = t 6 , d x = 6 t 5 ∫ 1 x + x 3 d x = ∫ 6 t 5 t 3 + t 2 d t = ∫ 6 ( t 2 − t + 1 − 1 t + 1 ) d t = 2 t 3 − 3 t 2 + 6 t − 6 ln ⁡ ∣ t + 1 ∣ + C = 2 x 1 2 − 3 x 1 3 + 6 x 1 6 − 6 ln ⁡ ∣ x 1 6 + 1 ∣ + C 解:令\sqrt[6]{x}=t,则x=t^6,dx=6t^5\\ \int{\frac{1}{\sqrt{x}+\sqrt[3]{x}}dx}=\int{\frac{6t^5}{t^3+t^2}dt}\\ =\int{6(t^2-t+1-\frac{1}{t+1})dt}=2t^3-3t^2+6t-6\ln|t+1|+C\\ =2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\ln|x^{\frac{1}{6}}+1|+C 解:令6x =t,x=t6,dx=6t5x +3x 1dx=t3+t26t5dt=6(t2t+1t+11)dt=2t33t2+6t6lnt+1∣+C=2x213x31+6x616lnx61+1∣+C
例4 求 ∫ 1 1 + x + x + 1 d x \int{\frac{1}{1+\sqrt{x}+\sqrt{x+1}}dx} 1+x +x+1 1dx
解:令 t = x + x + 1 , x = 1 4 ( t − 1 t ) 2 d t = 1 2 ( t − 1 t ) ( 1 + 1 t 2 ) d t ∫ 1 1 + x + x + 1 d x = 1 2 ∫ t − 1 t 3 d t = − 1 2 t + 1 4 t 2 + C = 1 4 ( x + 1 − x ) ( x + 1 − x − 2 ) + C 解:令t=\sqrt{x}+\sqrt{x+1},x=\frac{1}{4}(t-\frac{1}{t})^2\\ dt=\frac{1}{2}(t-\frac{1}{t})(1+\frac{1}{t^2})dt\\ \int{\frac{1}{1+\sqrt{x}+\sqrt{x+1}}dx}=\frac{1}{2}\int{\frac{t-1}{t^3}dt}\\ =-\frac{1}{2t}+\frac{1}{4t^2}+C=\frac{1}{4}(\sqrt{x+1}-\sqrt{x})(\sqrt{x+1}-\sqrt{x}-2)+C 解:令t=x +x+1 ,x=41(tt1)2dt=21(tt1)(1+t21)dt1+x +x+1 1dx=21t3t1dt=2t1+4t21+C=41(x+1 x )(x+1 x 2)+C
例5求 ∫ 1 ( 1 + x ) 1 − x 2 d x \int{\frac{1}{(1+x)\sqrt{1-x^2}}dx} (1+x)1x2 1dx
解:令 x = sin ⁡ t , d x = cos ⁡ t ∫ 1 ( 1 + x ) 1 − x 2 d x = ∫ 1 1 + sin ⁡ t d t = ∫ ( sec ⁡ 2 t − tan ⁡ t sec ⁡ t ) d t = tan ⁡ t − sec ⁡ t + C = x − 1 1 − x 2 + C 解:令x=\sin t,dx=\cos t\\ \int{\frac{1}{(1+x)\sqrt{1-x^2}}dx}=\int{\frac{1}{1+\sin t}dt}\\ =\int{(\sec^2t-\tan t\sec t)dt}=\tan t-\sec t+C\\ =\frac{x-1}{\sqrt{1-x^2}}+C 解:令x=sint,dx=cost(1+x)1x2 1dx=1+sint1dt=(sec2ttantsect)dt=tantsect+C=1x2 x1+C
例6 ∫ 1 x ( x 6 + 4 ) d x \int{\frac{1}{x(x^6+4)}dx} x(x6+4)1dx
解: ∫ 1 x ( x 6 + 4 ) d x = 1 4 ∫ 4 + x 6 − x 6 x ( x 6 + 4 ) d x = 1 24 ln ⁡ x 6 x 6 + 4 + C 解:\int{\frac{1}{x(x^6+4)}dx}=\frac{1}{4}\int{\frac{4+x^6-x^6}{x(x^6+4)}dx}\\ =\frac{1}{24}\ln\frac{x^6}{x^6+4}+C 解:x(x6+4)1dx=41x(x6+4)4+x6x6dx=241lnx6+4x6+C

∫ 1 x ( a x n + b ) d x = 1 b n ln ⁡ ∣ x n a x n + b ∣ , b n ≠ 0 \int{\frac{1}{x(ax^n+b)}dx}=\frac{1}{bn}\ln|\frac{x^n}{ax^n+b}|,bn\not=0 x(axn+b)1dx=bn1lnaxn+bxn,bn=0

例7 求 ∫ 1 1 + e x 2 + e x 3 + e x 6 d x \int{\frac{1}{1+e^{\frac{x}{2}}+e^{\frac{x}{3}}+e^{\frac{x}{6}}}dx} 1+e2x+e3x+e6x1dx
解:令 e x 6 = t , x = 6 ln ⁡ t , d x = 6 t d t 原式 = ∫ 1 1 + t 3 + t 2 + t ⋅ 6 t d t = ∫ 6 ( t 2 + 1 ) ( t + 1 ) t d t 6 ( t 2 + 1 ) ( t + 1 ) t = a t + b t + 1 + c x + d t 2 + 1 计算的 a = 6 , b = − 3 , c = − 3 , d = − 3 上式 = ∫ ( 6 t − 3 t + 1 − 3 t + 1 t 2 + 1 ) d t = 6 ln ⁡ ∣ t ∣ − 3 ln ⁡ ∣ t + 1 ∣ − 3 2 ln ⁡ ∣ t 2 + 1 ∣ − 3 arctan ⁡ t + C = x − 3 ln ⁡ ∣ e x 6 + 1 ∣ − 3 2 ln ⁡ ∣ e x 3 + 1 ∣ − 3 arctan ⁡ e x 6 + C 解:令e^{\frac{x}{6}}=t,x=6\ln t,dx=\frac{6}{t}dt\\ 原式=\int{\frac{1}{1+t^3+t^2+t}\cdot\frac{6}{t}dt}\\ =\int{\frac{6}{(t^2+1)(t+1)t}dt}\\ \frac{6}{(t^2+1)(t+1)t}=\frac{a}{t}+\frac{b}{t+1}+\frac{cx+d}{t^2+1}\\ 计算的a=6,b=-3,c=-3,d=-3\\ 上式=\int{(\frac{6}{t}-\frac{3}{t+1}-3\frac{t+1}{t^2+1})dt}\\ =6\ln|t|-3\ln|t+1|-\frac{3}{2}\ln|t^2+1|-3\arctan t+C\\ =x-3\ln|e^{\frac{x}{6}}+1|-\frac{3}{2}\ln|e^{\frac{x}{3}}+1|-3\arctan e^{\frac{x}{6}}+C 解:令e6x=t,x=6lnt,dx=t6dt原式=1+t3+t2+t1t6dt=(t2+1)(t+1)t6dt(t2+1)(t+1)t6=ta+t+1b+t2+1cx+d计算的a=6,b=3,c=3,d=3上式=(t6t+133t2+1t+1)dt=6lnt3lnt+1∣23lnt2+1∣3arctant+C=x3lne6x+1∣23lne3x+1∣3arctane6x+C

5 分部积分求不定积分

∫ u d v = v u − ∫ v d u \int{udv}=vu-\int{vdu} udv=vuvdu

分部积分原则:

  • ∫ v d u 比 ∫ u d v \int{vdu}比\int{udv} vduudv好求
  • 分部积分选u的优先级别:反,对,幂,指,三
  • 循环积分:关于于不定积分的方程

例1 求 ∫ x sin ⁡ 2 x d x \int{x\sin^2xdx} xsin2xdx

分析: sin ⁡ 2 x \sin^2x sin2x优先降幂
解: ∫ x sin ⁡ 2 x d x = ∫ x ⋅ 1 − cos ⁡ 2 x 2 d x = 1 4 x 2 − ∫ 1 2 x cos ⁡ 2 x d x = 1 4 x 2 − 1 4 ∫ x d sin ⁡ 2 x = 1 4 x 2 − 1 4 x sin ⁡ 2 x − 1 8 cos ⁡ 2 x + C 解:\int{x\sin^2xdx}=\int{x\cdot\frac{1-\cos2x}{2}dx}\\ =\frac{1}{4}x^2-\int{\frac{1}{2}x\cos2xdx}=\frac{1}{4}x^2-\frac{1}{4}\int{xd\sin2x}\\ =\frac{1}{4}x^2-\frac{1}{4}x\sin2x-\frac{1}{8}\cos2x+C 解:xsin2xdx=x21cos2xdx=41x221xcos2xdx=41x241xdsin2x=41x241xsin2x81cos2x+C
例2 求 ∫ x 2 e 2 x e x \int{x^2e^{2x}}ex x2e2xex
解: ∫ x 2 e 2 x d x = 1 2 ∫ x 2 d e 2 x = 1 2 x 2 e 2 x − 1 2 ∫ e 2 x d x 2 = 1 2 x 2 e 2 x − 1 2 ∫ x d e 2 x = 1 2 x 2 e 2 x − 1 2 x e 2 x + 1 4 e 2 x + C 解:\int{x^2e^{2x}}dx=\frac{1}{2}\int{x^2de^{2x}}\\ =\frac{1}{2}x^2e^{2x}-\frac{1}{2}\int{e^{2x}dx^2}=\frac{1}{2}x^2e^{2x}-\frac{1}{2}\int{xde^{2x}}\\ =\frac{1}{2}x^2e^{2x}-\frac{1}{2}xe^{2x}+\frac{1}{4}e^{2x}+C 解:x2e2xdx=21x2de2x=21x2e2x21e2xdx2=21x2e2x21xde2x=21x2e2x21xe2x+41e2x+C

∫ x m e n x d x = 1 n x m e n x − m n ∫ x m − 1 e n x d x \int{x^me^{nx}dx}=\frac{1}{n}x^me^{nx}-\frac{m}{n}\int{x^{m-1}e^{nx}dx} xmenxdx=n1xmenxnmxm1enxdx

例3 求 ∫ arctan ⁡ e x e 2 x d x {\int\frac{\arctan e^x}{e^{2x}}dx} e2xarctanexdx
解: ∫ arctan ⁡ e x e 2 x d x = − 1 2 ∫ arctan ⁡ e x d e − 2 x = − 1 2 e − 2 x arctan ⁡ e x + 1 2 ∫ e x ( 1 e 2 x − 1 1 + e 2 x ) d x = − arctan ⁡ e x 2 e 2 x − 1 2 e x − 1 2 arctan ⁡ e x + C 解:\int{\frac{\arctan e^x}{e^{2x}}dx}=-\frac{1}{2}\int{\arctan e^xde^{-2x}}\\ =-\frac{1}{2}e^{-2x}\arctan e^x+\frac{1}{2}\int{e^x(\frac{1}{e^{2x}}-\frac{1}{1+e^{2x}})dx}\\ =-\frac{\arctan e^x}{2e^{2x}}-\frac{1}{2e^x}-\frac{1}{2}\arctan e^x+C 解:e2xarctanexdx=21arctanexde2x=21e2xarctanex+21ex(e2x11+e2x1)dx=2e2xarctanex2ex121arctanex+C
例4 求 ∫ s e c 3 x d x \int{sec^3xdx} sec3xdx
解: ∫ s e c 3 x d x = ∫ s e c x d tan ⁡ x = sec ⁡ x tan ⁡ x − ∫ tan ⁡ x d sec ⁡ x = sec ⁡ x tan ⁡ x − ∫ ( sec ⁡ 3 x − sec ⁡ x ) d x ∫ s e c 3 x = 1 2 sec ⁡ x tan ⁡ x + 1 2 ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C 解:\int{sec^3xdx=\int{secxd\tan x}}=\sec x\tan x-\int{\tan xd\sec x}\\ =\sec x\tan x-\int{(\sec^3x-\sec x)dx}\\ \int{sec^3x}=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C 解:sec3xdx=secxdtanx=secxtanxtanxdsecx=secxtanx(sec3xsecx)dxsec3x=21secxtanx+21lnsecx+tanx+C
例5 f ( x ) f(x) f(x)的一个原函数为 x cos ⁡ x x\cos x xcosx,求 ∫ x ⋅ f ′ ( x ) d x \int{x\cdot f^{'}(x)dx} xf(x)dx
解:由已知得, ∫ f ( x ) d x = x cos ⁡ x + C f ( x ) = ( x cos ⁡ x ) ′ = cos ⁡ x − x sin ⁡ x ∫ x ⋅ f ′ ( x ) d x = ∫ x d f ( x ) = x f ( x ) − ∫ f ( x ) d x = x ( cos ⁡ x − x sin ⁡ x ) − x cos ⁡ x + C = − x 2 sin ⁡ x + C 解:由已知得,\int{f(x)dx}=x\cos x+C\\ f(x)=(x\cos x)^{'}=\cos x-x\sin x\\ \int{x\cdot f^{'}(x)dx}=\int{xdf(x)}=xf(x)-\int{f(x)dx}\\ =x(\cos x-x\sin x)-x\cos x+C=-x^2\sin x+C 解:由已知得,f(x)dx=xcosx+Cf(x)=(xcosx)=cosxxsinxxf(x)dx=xdf(x)=xf(x)f(x)dx=x(cosxxsinx)xcosx+C=x2sinx+C
例6 设 F ( x ) 是 f ( x ) F(x)是f(x) F(x)f(x) 的原函数, 且当 x ≥ 0 时 x\ge0时 x0 f ( x ) ⋅ F ( x ) = x e x 2 ( 1 + x ) 2 f(x)\cdot F(x)=\frac{xe^x}{2(1+x)^2} f(x)F(x)=2(1+x)2xex,已知 F ( 0 ) = 1 , F ( x ) > 0 F(0)=1,F(x)\gt0 F(0)=1,F(x)>0.求 f ( x ) f(x) f(x)
解:有已知得 F ′ ( x ) = f ( x ) f ( x ) ⋅ F ( x ) = x e x 2 ( 1 + x ) 2 两边求积分 ∫ f ( x ) ⋅ F ( x ) d x = ∫ x e x 2 ( 1 + x ) 2 d x F 2 ( x ) = − ∫ x e x d ( 1 1 + x ) = e x 1 + x + C 因为 F ( 0 ) = 1 , 所以 C = 0 因为 x ≥ 0 时, F ( x ) > 0 , 所以 F ( x ) = e x 1 + x f ( x ) = F ′ ( x ) = ( e x 1 + x ) ′ = 1 2 1 e x 1 + x ⋅ x e x ( 1 + x 2 ) = x e 1 2 2 ( 1 + x ) 3 2 解:有已知得 F^{'}(x)=f(x)\\ f(x)\cdot F(x)=\frac{xe^x}{2(1+x)^2}两边求积分\\ \int{f(x)\cdot F(x)dx}=\int{\frac{xe^x}{2(1+x)^2}}dx\\ F^2(x)=-\int{xe^xd(\frac{1}{1+x})}=\frac{e^x}{1+x}+C\\ 因为F(0)=1,所以C=0\\ 因为x\ge0时,F(x)\gt0,所以F(x)=\sqrt{\frac{e^x}{1+x}}\\ f(x)=F^{'}(x)=(\sqrt{\frac{e^x}{1+x}})^{'}=\frac{1}{2}\frac{1}{\sqrt{\frac{e^x}{1+x}}}\cdot\frac{xe^x}{(1+x^2)}\\ =\frac{xe^{\frac{1}{2}}}{2(1+x)^{\frac{3}{2}}} 解:有已知得F(x)=f(x)f(x)F(x)=2(1+x)2xex两边求积分f(x)F(x)dx=2(1+x)2xexdxF2(x)=xexd(1+x1)=1+xex+C因为F(0)=1,所以C=0因为x0时,F(x)>0,所以F(x)=1+xex f(x)=F(x)=(1+xex )=211+xex 1(1+x2)xex=2(1+x)23xe21

6 表格法积分

函数 u ( x ) , v ( x ) , n + 1 阶可导 u(x),v(x), n+1阶可导 u(x),v(x),n+1阶可导
∫ u v ( n + 1 ) d x 反复使用分部积分可得 ∫ u v ( n + 1 ) d x = ∫ u d v ( n ) = u v ( n ) − ∫ u ′ v ( n ) d x = u v ( n ) − u ′ v ( n − 1 ) + ∫ u ′ ′ v ( n − 1 ) d x = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) − ∫ u ′ ′ ′ v ( n − 2 ) d x = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) + ⋯ + ( − 1 ) n u ( n ) v + ( − 1 ) n + 1 ∫ u ( n + 1 ) v d x \int{uv^{(n+1)}dx}反复使用分部积分可得\\ \int{uv^{(n+1)}dx}=\int{udv^{(n)}}=uv^{(n)}-\int{u^{'}v^{(n)}dx}\\ =uv^{(n)}-u^{'}v^{(n-1)}+\int{u^{''}v^{(n-1)}dx}\\ =uv^{(n)}-u^{'}v^{(n-1)}+u^{''}v^{(n-2)}-\int{u^{'''}v^{(n-2)}dx}\\ =uv^{(n)}-u^{'}v^{(n-1)}+u^{''}v^{(n-2)}+\cdots+(-1)^nu^{(n)}v+(-1)^{n+1}\int{u^{(n+1)}vdx} uv(n+1)dx反复使用分部积分可得uv(n+1)dx=udv(n)=uv(n)uv(n)dx=uv(n)uv(n1)+u′′v(n1)dx=uv(n)uv(n1)+u′′v(n2)u′′′v(n2)dx=uv(n)uv(n1)+u′′v(n2)++(1)nu(n)v+(1)n+1u(n+1)vdx
表格如下:

在这里插入图片描述

例1 求 ∫ ( x 3 + 2 x ) sin ⁡ x d x \int{(x^3+2x)\sin xdx} (x3+2x)sinxdx
解: ∫ ( x 3 + 2 x ) sin ⁡ x d x = − ( x 3 + 2 x ) cos ⁡ x + ( 3 x 2 + 2 ) sin ⁡ x + 6 x cos ⁡ x − 6 sin ⁡ x + C = ( 3 x 2 − 4 ) sin ⁡ x − ( x 3 − 4 x ) cos ⁡ x + C 解:\int{(x^3+2x)\sin xdx}=-(x^3+2x)\cos x+(3x^2+2)\sin x+6x\cos x-6\sin x+C\\ =(3x^2-4)\sin x-(x^3-4x)\cos x+C 解:(x3+2x)sinxdx=(x3+2x)cosx+(3x2+2)sinx+6xcosx6sinx+C=(3x24)sinx(x34x)cosx+C
例2 ∫ e 3 x sin ⁡ 2 x d x \int{e^{3x}\sin2xdx} e3xsin2xdx
解: ∫ e 3 x sin ⁡ 2 x d x = − 1 2 e 3 x cos ⁡ 2 x + 3 4 e 3 x sin ⁡ 2 x − ∫ 9 4 e 3 x sin ⁡ 2 x d x ∫ e 3 x sin ⁡ 2 x d x = − 2 13 e 3 x cos ⁡ 2 x + 3 13 e 3 x sin ⁡ 2 x + C 解:\int{e^{3x}\sin2xdx}=-\frac{1}{2}e^{3x}\cos2x+\frac{3}{4}e^{3x}\sin2x-\int{\frac{9}{4}e^{3x}\sin2xdx}\\ \int{e^{3x}\sin2xdx}=-\frac{2}{13}e^{3x}\cos2x+\frac{3}{13}e^{3x}\sin2x+C 解:e3xsin2xdx=21e3xcos2x+43e3xsin2x49e3xsin2xdxe3xsin2xdx=132e3xcos2x+133e3xsin2x+C

7 有理函数求积分

例1 求 ∫ x 3 + 1 x ( x − 1 ) 3 d x \int{\frac{x^3+1}{x(x-1)^3}dx} x(x1)3x3+1dx
解: x 3 + 1 x ( x − 1 ) 3 = a x + b ( x − 1 ) 3 + c ( x − 1 ) 2 + d x − 1 通分得, a ( x − 1 ) 3 + b x + c x ( x − 1 ) + d x ( x − 1 ) 2 = x 3 + 1 计算得 a = − 1 , b = 2 , c = 1 , d = 2 , 所以 ∫ x 3 + 1 x ( x − 1 ) 3 = ∫ ( − 1 x + 2 x − 1 + 1 ( x − 1 ) 2 + 2 ( x − 1 ) 3 ) d x = − ln ⁡ ∣ x ∣ + 2 ln ⁡ ∣ x − 1 ∣ − 1 x − 1 − 1 ( x − 1 ) 2 + C 解:{\frac{x^3+1}{x(x-1)^3}}=\frac{a}{x}+\frac{b}{(x-1)^3}+\frac{c}{(x-1)^2}+\frac{d}{x-1}\\ 通分得,a(x-1)^3+bx+cx(x-1)+dx(x-1)^2=x^3+1\\ 计算得a=-1,b=2,c=1,d=2,所以\\ \int{\frac{x^3+1}{x(x-1)^3}}=\int{(\frac{-1}{x}+\frac{2}{x-1}+\frac{1}{(x-1)^2}+\frac{2}{(x-1)^3})dx}=-\ln|x|+2\ln|x-1|-\frac{1}{x-1}-\frac{1}{(x-1)^2}+C 解:x(x1)3x3+1=xa+(x1)3b+(x1)2c+x1d通分得,a(x1)3+bx+cx(x1)+dx(x1)2=x3+1计算得a=1,b=2,c=1,d=2,所以x(x1)3x3+1=(x1+x12+(x1)21+(x1)32)dx=lnx+2lnx1∣x11(x1)21+C
例2 求 ∫ 2 x + 2 ( x − 1 ) ( x 2 + 1 ) 2 d x \int{\frac{2x+2}{(x-1)(x^2+1)^2}dx} (x1)(x2+1)22x+2dx
解: 2 x + 2 ( x − 1 ) ( x 2 + 1 ) 2 = a x − 1 + b 1 x + c 1 x 2 + 1 + b 2 x + c 2 ( x 2 + 1 ) 2 通分得, a ( x 2 + 1 ) 2 + ( b 1 x + c 1 ) ( x − 1 ) ( x 2 + 1 ) + ( b 2 x + c 2 ) ( x − 1 ) = 2 x + 2 计算得, a = 1 , b 1 = − 1 , c 1 = − 1 , b 2 = − 2 , c 2 = 0 ∫ 2 x + 2 ( x − 1 ) ( x 2 + 1 ) 2 = ∫ ( 1 x − 1 − x + 1 x 2 + 1 − 2 x ( x 2 + 1 ) 2 ) d x = ln ⁡ ∣ x − 1 ∣ − 1 2 ln ⁡ ∣ x 2 + 1 ∣ − arctan ⁡ x + 1 x 2 + 1 + C 解:\frac{2x+2}{(x-1)(x^2+1)^2}=\frac{a}{x-1}+\frac{b_1x+c_1}{x^2+1}+\frac{b_2x+c_2}{(x^2+1)^2}\\ 通分得,a(x^2+1)^2+(b_1x+c_1)(x-1)(x^2+1)+(b_2x+c_2)(x-1)=2x+2\\ 计算得,a=1,b_1=-1,c_1=-1,b_2=-2,c_2=0\\ \int{\frac{2x+2}{(x-1)(x^2+1)^2}}=\int{(\frac{1}{x-1}-\frac{x+1}{x^2+1}-\frac{2x}{(x^2+1)^2})dx}\\ =\ln|x-1|-\frac{1}{2}\ln|x^2+1|-\arctan x+\frac{1}{x^2+1}+C 解:(x1)(x2+1)22x+2=x1a+x2+1b1x+c1+(x2+1)2b2x+c2通分得,a(x2+1)2+(b1x+c1)(x1)(x2+1)+(b2x+c2)(x1)=2x+2计算得,a=1,b1=1,c1=1,b2=2,c2=0(x1)(x2+1)22x+2=(x11x2+1x+1(x2+1)22x)dx=lnx1∣21lnx2+1∣arctanx+x2+11+C
例3 求 ∫ 1 8 − 4 sin ⁡ x + 7 cos ⁡ x d x \int{\frac{1}{8-4\sin x+7\cos x}dx} 84sinx+7cosx1dx
令 tan ⁡ x 2 = t , x = 2 arctan ⁡ t , d x = 2 1 + t 2 ∫ 1 8 − 4 sin ⁡ x + 7 cos ⁡ x d x = ∫ 1 8 − 4 2 t 1 + t 2 + 7 1 − t 2 1 + t 2 ⋅ 2 1 + t 2 d t = ∫ ( 1 t − 5 − 1 t − 3 ) d t = ln ⁡ ∣ t − 5 t − 3 ∣ + C = ln ⁡ ∣ tan ⁡ x 2 − 5 tan ⁡ x 2 − 3 ∣ + C 令\tan\frac{x}{2}=t,x=2\arctan t,dx=\frac{2}{1+t^2}\\ \int{\frac{1}{8-4\sin x+7\cos x}dx}=\int{\frac{1}{8-4\frac{2t}{1+t^2}+7\frac{1-t^2}{1+t^2}}\cdot\frac{2}{1+t^2}dt}\\ =\int{(\frac{1}{t-5}-\frac{1}{t-3})dt}=\ln|\frac{t-5}{t-3}|+C =\ln|\frac{\tan\frac{x}{2}-5}{\tan\frac{x}{2}-3}|+C tan2x=t,x=2arctant,dx=1+t2284sinx+7cosx1dx=841+t22t+71+t21t211+t22dt=(t51t31)dt=lnt3t5+C=lntan2x3tan2x5+C

∫ a sin ⁡ x + b cos ⁡ x c sin ⁡ x + d cos ⁡ x d x = ∫ A ( c sin ⁡ x + d cos ⁡ x ) + B ( c sin ⁡ x + d cos ⁡ x ) ′ c sin ⁡ x + d cos ⁡ x d x \int{\frac{a\sin x+b\cos x}{c\sin x+d\cos x}dx}=\int{\frac{A(c\sin x+d\cos x)+B(c\sin x+d\cos x)^{'}}{c\sin x +d\cos x}dx} csinx+dcosxasinx+bcosxdx=csinx+dcosxA(csinx+dcosx)+B(csinx+dcosx)dx

例4 求 ∫ 4 sin ⁡ x + 3 cos ⁡ x 2 sin ⁡ x − cos ⁡ x d x \int{\frac{4\sin x+3\cos x}{2\sin x-\cos x}dx} 2sinxcosx4sinx+3cosxdx
解 : 原式 = ∫ a ( 2 sin ⁡ x − cos ⁡ x ) + b ( 2 sin ⁡ x − cos ⁡ x ) ′ 2 sin ⁡ x − cos ⁡ x d x a = 1 , b = 2 原式 = x + 2 2 sin ⁡ x − cos ⁡ x d ( 2 sin ⁡ x − cos ⁡ x ) = x + 2 ln ⁡ ∣ 2 sin ⁡ x − cos ⁡ x ∣ + C 解:原式=\int{\frac{a(2\sin x-\cos x)+b(2\sin x-\cos x)^{'}}{2\sin x-\cos x}dx}\\ a =1,b=2\\ 原式=x+\frac{2}{2\sin x-\cos x}d(2\sin x-\cos x)=x+2\ln|2\sin x-\cos x|+C :原式=2sinxcosxa(2sinxcosx)+b(2sinxcosx)dxa=1,b=2原式=x+2sinxcosx2d(2sinxcosx)=x+2ln∣2sinxcosx+C

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p31.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值