支持向量机

1、支持向量机概述

支 持 向 量 机 ( Support Vector Machine,SVM ) 是 一 类 按 监 督 学 习 (supervised learning)方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。

假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情况。软间隔,就是允许一定量的样本分类错误。

硬间隔、软间隔和非线性 SVM:

1.1 算法思想

找到集合边缘上的若干数据(称为支持向量(Support Vector)),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

1.2 背景知识

任意超平面可以用下面这个线性方程来描述:

二维空间点 (𝑥, 𝑦)到直线 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0的距离公式是:

根据支持向量的定义我们知道,支持向量到超平面的距离为 𝑑,其他点到超平面的距离大于 𝑑。

二、线性可分支持向量机

2.1 背景知识

点到面的距离公式:

支持向量机的最终目的是最大化𝑑

函数间隔:

几何间隔:当数据被正确分类时,几何间隔就是点到超平面的距离

为了求几何间隔最大,SVM基本问题可以转化为求解:

三、线性支持向量机

若数据线性不可分,则可以引入松弛变量𝜉 ≥ 0,使函数间隔加上松弛变量大于等于1 ,则目标函数:

对偶问题:

𝐶为惩罚参数, 𝐶 值越大 ,对分类的惩罚越大。跟线性可分求解的思路一致。同样这里先用拉格朗日乘子法得到拉格朗日函数,再求其对偶问题。

𝜉 为"松弛变量",即hinge损失函数。每一个样本都有一个对应的松弛变量,表征该样本不满足约束的程度。

求解原始最优化问题的解𝑤∗和𝑏∗,得到线性支持向量机.

其分离超平面为:

𝑤∗𝑇𝑥 + 𝑏∗= 0

分类决策函数为:

𝑓(𝑥) = sign (𝑤∗𝑇𝑥 + 𝑏∗)

线性可分支持向量机的解𝑤∗唯一,但𝑏∗不唯一。对偶问题是:

解出后,代入超平面模型:

𝑤∗𝑇𝑥 + 𝑏∗= 0

可得:

四、线性不可分支持向量机

4.1 核技巧

在低维空间计算获得高维空间的计算结果,满足高维,才能在高维下线性可分。 我们需要引入一个新的概念:核函数。它可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。这样我们就可以使用原来的推导来进行计算,只是所有的推导是在新的空间,而不是在原来的空间中进行,即用核函数来替换当中的内积。

4.2 核技巧

用核函数来替换原来的内积:

即通过一个非线性转换后的两个样本间的内积。具体地,𝐾(𝑥, 𝑧)是一个核函数,或正定核,意味着存在一个从输入空间到特征空间的映射,对于任意空间输入的𝑥, 𝑧 有:

在线性支持向量机学习的对偶问题中,用核函数𝐾(𝑥, 𝑧)替代内积,求解得到的就是非线性支持向量机:

4.3 常用核函数

线性核函数:

多项式核函数:

高斯核函数:

这三个常用的核函数中,只有高斯核函数是需要调参的.

4.4 SVM的超参数

𝛾越大,支持向量越少,𝛾值越小,支持向量越多。其中 C是惩罚系数,即对误差的宽容度。 C越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。

  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值