0101二阶与三阶行列式-行列式-线性代数

一 引例

求解二元一次方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1+a_{12}x_2=b_1\\ a_{21}x_1+a_{22}x_2=b_2\\ \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2

解: 1 × a 21 − 2 × a 11 ⇒ x 2 = a 11 b 2 − a 21 b 1 a 11 a 22 − a 12 a 21 x 1 = a 22 b 1 − a 12 b 2 a 11 a 22 − a 12 a 21 解:\\ 1\times a_{21}-2\times a_{11}\Rightarrow\\ x_2=\frac{a_{11}b_2-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}}\\ x_1=\frac{a_{22}b_1-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}}\\ 解:1×a212×a11x2=a11a22a12a21a11b2a21b1x1=a11a22a12a21a22b1a12b2

a 11 a 12 a 21 a 22 \begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix} a11a21a12a22 两行两列数表。

定义:表达式 a 11 a 22 − a 12 a 21 = Δ ∣ a 11 a 12 a 21 a 22 ∣ a_{11}a_{22}-a_{12}a_{21} \overset{\Delta}{=} \begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{vmatrix} a11a22a12a21=Δ a11a21a12a22 为数表所确定的二阶行列式。

注:

  1. ∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{vmatrix} a11a21a12a22 , a i j , i = 1 , 2 , j = 1 , 2 a_{ij},i=1,2,j=1,2 aij,i=1,2,j=1,2为行列式的元素。i为元素所在的行,j位元素所在的列。

二 计算

a 11 a 22 − a 12 a 21 = ∣ a 11 a 12 a 21 a 22 ∣ = D a_{11}a_{22}-a_{12}a_{21}= \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\\ \end{vmatrix} =D a11a22a12a21= a11a21a12a22 =D

b 1 a 22 − b 2 a 12 = ∣ b 1 a 12 b 2 a 22 ∣ = D 1 b_1a_{22}-b_2a_{12}= \begin{vmatrix} b_1&a_{12}\\ b_2&a_{22}\\ \end{vmatrix} =D_1 b1a22b2a12= b1b2a12a22 =D1

a 21 b 1 − a 11 b 2 = ∣ a 21 a 11 b 2 b 1 ∣ = D 2 a_{21}b_1-a_{11}b_2= \begin{vmatrix} a_{21}&a_{11}\\ b_2&b_1\\ \end{vmatrix} =D_2 a21b1a11b2= a21b2a11b1 =D2

一种二元一次方程组的解为 x 1 = D 1 D , x 2 = D 2 D x_1=\frac{D_1}{D},x_2=\frac{D_2}{D} x1=DD1,x2=DD2

{ 3 x 1 − 2 x 2 = 12 2 x 1 + x 2 = 1 \begin{cases}3x_1-2x_2=12\\2x_1+x_2=1\end{cases} {3x12x2=122x1+x2=1 x 1 , x 2 x_1,x_2 x1,x2
x 1 = 12 − ( − 2 ) 3 − ( − 4 ) = 2 x 2 = 3 − 24 7 = − 3 x_1=\frac{12-(-2)}{3-(-4)}=2\\ x_2=\frac{3-24}{7}=-3 x1=3(4)12(2)=2x2=7324=3

三 二阶行列式的几何意义

在这里插入图片描述

a 11 a 22 − a 12 a 21 = ∣ a 11 a 12 a 21 a 22 ∣ 令 ∣ a ⃗ ∣ = l , ∣ b ⃗ ∣ = m , 则平行四边形的面积: S = a ⃗ × b ⃗ = l ⋅ m ⋅ sin ⁡ ( β − α ) = l ⋅ m ( sin ⁡ β cos ⁡ α − cos ⁡ β sin ⁡ α ) = l cos ⁡ α ⋅ m sin ⁡ β − l sin ⁡ α ⋅ m cos ⁡ β = a 11 a 22 − a 12 a 21 a_{11}a_{22}-a_{12}a_{21}= \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\\ \end{vmatrix}\\ 令\vert\vec a\vert=l,\vert\vec b\vert=m,则 平行四边形的面积:\\ S=\vec a\times\vec b=l\cdot m\cdot\sin(\beta-\alpha)\\ =l\cdot m(\sin\beta\cos\alpha-\cos\beta\sin\alpha)\\ =l\cos\alpha\cdot m\sin\beta-l\sin\alpha\cdot m\cos\beta\\ =a_{11}a_{22}-a_{12}a_{21} a11a22a12a21= a11a21a12a22 a =l,b =m,则平行四边形的面积:S=a ×b =lmsin(βα)=lm(sinβcosαcosβsinα)=lcosαmsinβlsinαmcosβ=a11a22a12a21
上述二阶行列式几何意义:以行向量(第一行为向量和以第二行为向量)为邻边所构成平行四边形的面积。

三阶行列式放在后面N阶行列式讲解。

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值