目录
1:并查集的概念:
并查集是一种树形的数据结构(大家听不懂就pass,好吧,其实是我不懂,哈哈哈)。通俗来说呢,就是两个集合可能是相交的也可能不是,那我们怎么知道其中的某一个元素到底属于哪一方呢,这时就用到了并查集,我们给每一个元素找一个爸爸节点(这样叫好懂蛮),而既然有了儿子爸爸肯定会有一个祖先,也就是说每个元素必然有一个祖先节点(别在意名称哈,嘿嘿),而如果他们的祖先节点一样的话,那么就是一家人了,不一样肯定就不是一家人了。
2:并查集的操作与实现:
并查集的操作:并查集的操作基本上就两种(其实我只用到两种,哈哈哈):找祖先节点和合并操作。注意哈,在进行操作前,我们一定要进行对父亲节点初始化,也就是将父亲节点全部设置成自己,大家不理解的话我们就必须死记了,这个很重要!!!!
具体的在代码中大家可以看看。
#include<bits/stdc++.h>
using namespace std;
int a[100];
int father[100];//父亲节点
int root[100];//祖先节点
int find(int x)//找祖先节点
{
if(x!=father[x])
{
return father[x]=find(father[x]);//用到了路径压缩,大家可以作为记忆方面死记硬背
}
else return x;
}
void hebin(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)return ;
else{
father[x]=y;//或者father[y]=x;都可以,只是祖先节点改变而已
}
}
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)father[i]=i;//初始化
}
同时希望大家在看了这篇文章后可以多加练习,巩固一下,这里我推荐大家可以去洛谷直接在题单那里搜索并查集即可,那里有一些很适合大家练习的题目的,谢谢大家观看!!!