价值迭代网络

《价值迭代网络》获得NIPS 2016最佳论文奖,它提出使用神经网络替代人为设计的损失函数,特别是在增强学习中。文章核心是将价值迭代(VI)模块融入CNN,让网络学习价值函数,而非依赖于预先构建的函数。价值迭代网络(VIN)在解决如迷宫问题时,表现优于传统的深度增强学习,因为它能学习和表示未知的价值函数,而不仅仅是策略函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Value Iteration Networks》

在这里插入图片描述
《价值迭代网络(Value Iteration Networks)》获得了第 30 届神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems) NIPS 2016唯一的最佳论文奖项(Best Paper Award)

文章最大的贡献跟随现阶段深度学习的一种趋势:用神经网络去替代人为塑造的损失函数。 更好地计划, 预测未知的域。

正如”对抗样本与生成式对抗网络“一文所说的:
传统神经网络需要一个人类科学家精心打造的损失函数。
但是,对于生成模型这样复杂的过程来说,构建一个好的损失函数绝非易事。这就是对抗网络的闪光之处。对抗网络可以学习自己的损失函数——自己那套复杂的对错规则——无须精心设计和建构一个损失函数.

而这篇文章最核心的损失函数, 正是增强学习中用于策略评估的回报函数/价值函数。
最有意思的贡献, 就是不再用传统的 指数家族函数 或者 log损失函数 去模拟价值函数,而是在框架中加入一个 VI (Value iteration)模块 , 让CNN神经网络去学习价值函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值