综述智能体交叉口
文章平均质量分 82
EmilyGnn
这个作者很懒,什么都没留下…
展开
-
读书笔记 - 基于强化学习的城市交通信号控制方法研究 - 西电MaxPlus
《基于强化学习的城市交通信号控制方法研究》针对TC-GAC交通信号控制方法中只考虑局部拥堵因子的缺陷,引入车辆目的车道的全局拥堵因子,实现了多交叉口控制器Agent之间的简单协作。由于强化学习迭代求解的过程极为耗时,考虑将启发式强化学习用于交通信号控制问题。通过启发式函数来引导状态动作空间的探索,加快学习速度,改善动作选择策略。改进的基于信号灯-交叉口联合动作的协作图模型,通过Max-Plu...原创 2018-10-11 10:08:14 · 3888 阅读 · 0 评论 -
读书笔记 - 智能体技术在城市交通信号控制系统中应用综述2014
《智能体技术在城市交通信号控制系统中应用综述》-2014文中综述了智能体技术在交通信号控制系统中应用的技术与方法,包括系统架构、控制算法、建模与仿真,以及智能交通集成管理等方面;以及具体应用、研究动向。提出发展基于多智能体的交通网络信号集成控制系统的关键问题在于系统交互性、自适应性和可拓展性。背景智能体计算技术(agent-based computing) 允许将系统分解成多个相互关联的...原创 2018-10-09 14:23:46 · 1172 阅读 · 0 评论 -
读书笔记 - 多智能体强化学习在城市交通网络信号的综述2018
多智能体强化学习在城市交通网络信号 控制方法中的应用综述交通信号控制系统在物理位置和控制逻辑上分散于动态变化的网络交通环境, 将每个路口的交通信号控制器看做一个异质的智能体, 非常适合采用无模型、自学习、数据驱动的多智能体强化学习(MARL) 方法建模与描述。本文系统回顾了现有MARL方法在城市道路交通网络信号控制中的研究和应用, 探讨了将 MARL应用于大规模区域交通控制的关键问题。为了...原创 2018-10-06 21:08:53 · 5356 阅读 · 1 评论 -
读书笔记 - 多Agent强化学习下的自适应交通信号控制研究综述2017
《多Agent强化学习下的城市路网自适应交通信号协调配时决策研究综述》系统地总结了多Agent强化学习及协调机制的研究方法,详细地分析了国内外研究现状,并指出现有研究中存在的问题,在此基础上对未来研究进行了展望。研究结果表明,既有研究主要针对规模较小的路网;存在维数灾难问题;强化学习与协调机制结合研究还不够深入;相关学习参数分析不够细致;仿真环境和情景现实性不强。未来研究可以引入马尔科夫博弈...原创 2018-10-09 16:58:45 · 2943 阅读 · 0 评论 -
阿里车路协同
阿里无人车的最新进展——从单车智能到车路协同9 月 6 日,阿里达摩院与交通运输部公路科学研究院(公路院)签署战略合作,成立车路协同联合实验室。与车路协同相对应的是“单车智能”,这是包括谷歌以及一众无人驾驶创业公司选择的技术路径。所谓“单车智能”,就是让无人驾驶车辆本身变得更聪明,正确及时地感知、决策、控制,以应对各种复杂路况。但这种技术方案由于自身传感器等的局限,不能达到安全的要求。车...原创 2018-11-01 20:34:34 · 3090 阅读 · 0 评论