Dijkstra算法
Dijkstra算法能够解决边权重非负的加权有向图的单起点最短路径问题。
在之前,我们讨论过寻找加权无向图中的最小生成树的Prim算法:构造最小生成树的每一步都向这棵树中添加一条新的边。
Dijkstra算法采用了类似的方法来计算最短路径树。首先将 distTo[] 最小的非树顶点放松并加入树中,如此直到所有的顶点都在树中或者所有非树顶点的 distTo[] 值均为无穷大。
数据结构
要实现 Dijkstra算法,除了 distTo[] 和 edgeTo[] 数组之外还需要一条 索引优先队列 pq,以保存需要被放松的顶点并确认下一个被放松的顶点。
IndexMinPQ 可以将索引和键(优先级)关联起来,并且可以删除并返回优先级最低的索引。在这里,只要将顶点v 和 distTo[v] 关联起来就可以得到 Dijkstra 算法的实现。
算法步骤:
1)distTo[s] = 0, distTo[v] = INFINITY (v≠s)
2)将 distTo[] 中离顶点 s 最近的非树顶点放松, 并加入到树中
3)重复2,直到所有顶点都在树中或者所有的非树顶点的 distTo[] 值均为无穷大
算法实现
在 relax() 方法中添加了一行语句来处理以下两种情况:
1、边的 to() 得到的顶点不在优先队列中,此时需要使用 insert() 方法将它加入到优先队列中
2、它已经在优先队列中,且优先级需要被降低,此时需要使用 change() 方法实现
思考 Dijkstra算法的另一种方式就是将它和 Prim算法相比较。两种算法都会用添加边的方式构造一棵树:Prim算法每次添加的都是 离树最近 的非树顶点;Dijkstra算法每次添加的都是 离起点最近 的非树顶点。
/*
* 单起点最短路径的 Dijkstra算法
*/
public class DijkstraSP
{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq; //优先队列
public DijkstraSP(EdgeWeightedDigraph G, int s)
{
edgeTo = new DirectedEdge