【深度学习|语义分割之UNet】如何使用ResNet50 作为 U-Net 网络的骨干网络(backbone)并使用预训练的 ResNet50 模型。附代码及解读。

【深度学习|语义分割之UNet】如何使用ResNet50 作为 U-Net 网络的骨干网络(backbone)并使用预训练的 ResNet50 模型。附代码及解读。

【深度学习|语义分割之UNet】如何使用ResNet50 作为 U-Net 网络的骨干网络(backbone)并使用预训练的 ResNet50 模型。附代码及解读。



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/146183790


前言

要将 ResNet50 作为

### 使用ResNet50作为主干网络进行语义分割 为了实现基于ResNet50语义分割模型,在PyTorch中可以利用`torchvision.models.segmentation.deeplabv3_resnet50(pretrained=True)`来加载带有ResNet50骨干网的预训练DeepLabV3模型[^1]。 #### PyTorch中的具体操作方法: 在PyTorch环境中,可以通过以下方式初始化修改该模型以适应特定的数据集需求。下面是一个简单的例子展示如何完成这一目标: ```python import torch from torchvision import models, transforms from PIL import Image import numpy as np # 加载预训练的DeepLabV3 with ResNet50 backbone model = models.segmentation.deeplabv3_resnet50(pretrained=True) # 假设类别数量不是默认值,则需调整分类器部分 num_classes = 2 # 如二分类问题 if num_classes != model.classifier[4].out_channels: model.classifier[4] = torch.nn.Conv2d(256, num_classes, kernel_size=(1, 1), stride=(1, 1)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device); ``` 对于TensorFlow用户来说,虽然官方API可能有所不同,但是概念上是一致的——即先获取一个已经过ImageNet训练好的ResNet50模型在此基础上构建适合于语义分割任务的新架构。这里提供了一个类似的思路用于指导开发人员在TensorFlow框架下工作: ```python import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.layers import Input, Conv2DTranspose, Concatenate, BatchNormalization, Activation from tensorflow.keras.models import Model def build_deeplabv3_plus(input_shape=(None, None, 3)): base_model = ResNet50(include_top=False, weights='imagenet', input_tensor=Input(shape=input_shape)) # 获取不同层次特征图 c1 = base_model.get_layer('conv1_relu').output c2 = base_model.get_layer('conv2_block3_out').output c3 = base_model.get_layer('conv3_block4_out').output c4 = base_model.get_layer('conv4_block6_out').output # ASPP模块和其他组件... # (此处省略具体的ASPP结构搭建代码) output = ... # 完成最终输出层的设计 return Model(inputs=[base_model.input], outputs=output) deeplabv3p = build_deeplabv3_plus() ``` 上述两段代码分别展示了如何在两个不同的深度学习库中使用ResNet50作为基础网络来进行语义分割的任务设置。需要注意的是,实际应用时还需要考虑输入图片尺寸、批量大小等因素的影响以及针对特定应用场景做适当调整[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值