【北上广深杭等大厂面试|高频AI算法题】机器学习篇...本篇介绍介绍决策树算法的ID3和C4.5???附代码(二)

【北上广深杭等大厂面试|高频AI算法题】机器学习篇…本篇介绍介绍决策树算法的ID3和C4.5???附代码(二)

【北上广深杭等大厂面试|高频AI算法题】机器学习篇…本篇介绍介绍决策树算法的ID3和C4.5???附代码(二)



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz

决策树算法详解:ID3 和 C4.5

决策树是一种基于树形结构的分类算法,用于根据特征的属性值对样本进行分类。决策树的构建是通过选择不同特征作为“节点”来完成的,每个节点表示一个特征,每个分支代表该特征的一个值,最终的叶子节点代表分类结果。ID3(Iterative Dichotomiser 3)和C4.5是决策树算法的两种经典变种,它们在构建决策树的过程中有一些不同的选择标准和方法。

3. ID3与C4.5的比较

在这里插入图片描述

4. Python实现(以C4.5为例)

  • 虽然scikit-learn中并没有直接实现C4.5算法,但它实现了一个决策树算法——DecisionTreeClassifier,其背后的实现是CART(Classification And Regression Trees)。

下面是一个简单的例子,展示如何使用scikit-learn来训练决策树:

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.tree import export_text

# 加载鸢尾花数据集
data = load_iris()
X = data.data
y = data.target

# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建决策树模型
model = DecisionTreeClassifier(criterion='entropy')  # 使用信息增益作为分裂准则(ID3)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算精度
accuracy = accuracy_score(y_test, y_pred)
print(f"模型精度:{accuracy:.2f}")

# 打印决策树
tree_rules = export_text(model, feature_names=data.feature_names)
print(tree_rules)

总结

  • ID3算法通过信息增益来选择最佳特征,虽然简单易懂,但它存在偏向选择取值多特征的问题
  • C4.5改进了ID3算法,采用增益率作为特征选择标准,支持连续特征和缺失值,并通过剪枝技术减少过拟合,具有更强的实用性
  • ID3和C4.5都是经典的决策树算法,它们为后续的决策树算法(如CART、C5.0等)奠定了基础。

2025年生成式人工智能与数字媒体国际学术会议(GADM 2025)

  • 2025 International Conference on Generative Artificial Intelligence and Digital Media
  • 大会官网:www.icgadm.org
  • 大会时间:2025年3月14-17日
  • 大会地点:中国-大理
  • 审核周期:5-7个工作日
  • 收录检索:EI Compendex, Scopus
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值