GarfieldEr007的专栏

勤奋治学 深度思考 静心钻研 先苦后甜

Word2Vec详解

Word2Vec详解 这几天集中学习了Word2Vec,实现并不复杂,但是真正对一些细节有些了解还查阅了一些资料,今天在这里统一自己整理总结一下。 简介 首先说为什么会有Word2Vec,之前对文字的编码通常使用的是one-hot,也就是一个词对应一个编号,或者是一个向量,这样一篇文章就是一个稀...

2019-03-10 23:11:24

阅读数 80

评论数 0

NLP之——Word2Vec详解

2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(...

2019-03-10 23:09:58

阅读数 189

评论数 0

word2vec原理之CBOW与Skip-Gram模型基础

word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的word2vec代码为准。本文关注于wo...

2019-03-10 23:08:57

阅读数 116

评论数 0

机器视觉:Asymmetry Problem in Computer Vision

自然法则无时不刻不给予着人类以对称性的恩惠,从一片树叶到人类自身,其形态都是对称的。对称性的特性,大大减轻了人类的记忆和认知负担。然而,弱相互作用中互为镜像的物质的运动不对称却暗藏着自然法则对非对称性的偏爱。 在计算机视觉中,对称性是一个很好的先验,如果某一个特定的物体具备对称性的话,通过引...

2019-02-08 16:03:40

阅读数 75

评论数 0

利用模拟退火提高Kmeans的聚类精度

 http://www.cnblogs.com/LBSer/p/4605904.html   Kmeans算法是一种非监督聚类算法,由于原理简单而在业界被广泛使用,一般在实践中遇到聚类问题往往会优先使用Kmeans尝试一把看看结果。本人在工作中对Kmeans有过多次实践,进行过用户行为聚类(Ma...

2018-12-02 23:05:57

阅读数 197

评论数 1

简明机器学习教程——实践篇(一):从感知机入手

有那么一段时间不出干货了,首页都要被每周歌词霸占了,再不写一点东西都要变成咸鱼了。进入正题。本篇教程的目标很明显,就是实践。进一步的来说,就是,当你学到了一些关于机器学习的知识后,怎样通过实践以加深对内容的理解。这里,我们从李航博士的《统计学习方法》的第2章感知机来做例子,由此引出大致的学习方法。...

2017-04-16 16:53:16

阅读数 1180

评论数 0

近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)

本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。 《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM...

2017-03-08 22:55:25

阅读数 2125

评论数 0

浅谈L0,L1,L2范数及其应用

原文传送门:浅谈L0,L1,L2范数及其应用 浅谈L0,L1,L2范数及其应用 在线性代数,函数分析等数学分支中,范数(Norm)是一个函数,其赋予某个向量空间(或矩阵)中的每个向量以长度或大小。对于零向量,另其长度为零。直观的说,向量或矩阵的范数越大,则我们可以说这个向量或矩阵也就越大。...

2016-05-28 17:48:09

阅读数 3362

评论数 0

如何准备机器学习工程师的面试 ?

周开拓 ,推荐系统PM@淘宝 收录于 编辑推荐 •505 人赞同 机器学习方面的面试主要分成三个部分: 1. 算法和理论基础 2. 工程实现能力与编码水平 3. 业务理解和思考深度  1. 理论方面,我推荐最经典的一本书《统计学习方法》,这书可能不是最全的,但是讲得最精髓...

2016-05-25 16:33:26

阅读数 1913

评论数 0

机器学习该怎么入门?

阿猫Knight ,Perfekt 张逸萌 等 432 人赞同 我也谈谈自己的经验。 机器学习说简单就简单,说难就难,但如果一个人不够聪明的话,他大概很难知道机器学习哪里难。基本上要学习机器学习,先修课程是algebra, calculus, probability th...

2016-05-25 15:15:40

阅读数 4014

评论数 1

K-means Algorithm 聚类算法

在监督学习中,有标签信息协助机器学习同类样本之间存在的共性,在预测时只需判定给定样本与哪个类别的训练样本最相似即可。在非监督学习中,不再有标签信息的指导,遇到一维或二维数据的划分问题,人用肉眼就很容易完成,可机器就傻眼了,图(1)描述得很形象。 但处理高维度的数据,人脑也无能为力了,...

2016-05-22 17:52:49

阅读数 8623

评论数 0

SVM算法的生动讲解

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com   前言:     又有很长的一段时间没有更新...

2016-05-22 17:43:13

阅读数 12762

评论数 3

机器学习的最佳入门学习资源

这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。 文章里到底写什么、不写什么,这个问题真的让我很烦恼。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最...

2016-05-09 20:15:36

阅读数 1998

评论数 1

OWL-QN算法

一、BFGS算法       算法思想如下:            Step1   取初始点,初始正定矩阵,允许误差0">,令;            Step2   计算;            Step3   计算0">,使得             ...

2016-05-08 13:09:41

阅读数 643

评论数 0

生成模型与判别模型

生成模型与判别模型 zouxy09@qq.com http://blog.csdn.net/zouxy09        一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否。若有错误,还望各位前辈不吝指正,以免小弟一错再错。在此谢过。   一、决策函数Y...

2016-05-08 13:08:22

阅读数 621

评论数 0

无约束优化方法读书笔记—入门篇

声明: 1)该博文的绝大部分内容抄自课本《最优化理论与方法》,作者袁亚湘,孙文瑜 2)该博文只是列出优化算法大体框架,没有深入去推导各种公式。 2)本文仅供学术交流,非商用,有些部分本来就是直接从课本复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满...

2016-05-08 13:06:49

阅读数 892

评论数 0

从广义线性模型到逻辑回归

声明: 1)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,...

2016-05-08 13:02:34

阅读数 1430

评论数 1

EM算法学习笔记

EM算法学习笔记 标签: 机器学习数据挖掘十大算法EM李航 2014-08-23 15:04 3797人阅读 评论(5) 收藏 举报 分类: 数据挖掘基础知识(6) 版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[+] EM算法学习笔记 声...

2016-05-08 13:01:19

阅读数 691

评论数 0

LDA入门级学习笔记

声明: 1)该博文是多位博主以及科学家所无私奉献的论文资料整理的。具体引用的资料请看参考文献。具体的版本声明也参考原文献 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,并联...

2016-05-08 13:00:28

阅读数 869

评论数 0

图˙谱˙马尔可夫过程˙聚类结构----by林达华

这又是林达华的一篇好文,将四个概念在某个方面解释的很清楚,特别是特征值和特征向量的意义,让人豁然开朗。         原文已经找不到了,好像是因为林达华原来的live博客已经失效,能找到的只有网上转载的文章(本来还想把他的博客看个遍)。林本人的数学功底之强,有时候会让我们这些搞CV、ML的人趁...

2016-05-08 11:57:10

阅读数 802

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭