leetcode 295 数据流中中位数

方法一

class MedianFinder:
    def __init__(self):
        from sortedcontainers import SortedList
        self.right = 0
        self.arr = SortedList()

    def addNum(self, num: int) -> None:
        self.arr.add(num)
        self.right += 1

    def findMedian(self) -> float:
        if self.right % 2 == 0 :
            return self.arr[(self.right - 1) // 2] / 2 + self.arr[(self.right + 1) // 2] /2
        else :
            return self.arr[self.right // 2] 

方法二

from heapq import *
class MedianFinder(object):
# 维护两个堆,一个大顶堆,一个小顶堆,小顶堆里的数比大顶堆里的数都要大, 
# 如果有两个潜在的中位数(两个堆size相同),数据流的中位数就是两个堆顶之和除以2
# 如果只有一个中位数,就看size更小的那个堆的堆顶
# 新进来的数都丢进小顶堆,然后把小顶堆的堆顶丢到大顶堆,
# 调整两个堆,使得size 差最大为1
    def __init__(self):
        """
        initialize your data structure here.
        """
        self.max_h = list()
        self.min_h = list()
        heapify(self.max_h)
        heapify(self.min_h)
        
 
    def addNum(self, num):
        """
        :type num: int
        :rtype: None
        """
        heappush(self.min_h, num)
        heappush(self.max_h, -heappop(self.min_h))
        if len(self.max_h) > len(self.min_h):
            heappush(self.min_h, -heappop(self.max_h))
 
    def findMedian(self):
        """
        :rtype: float
        """
        max_len = len(self.max_h)
        min_len = len(self.min_h)
        if max_len == min_len: #有两个候选中位数
            return (self.min_h[0] + -self.max_h[0]) / 2.
        else:#小顶堆的size 一定 >= 大顶堆的size,所以答案就是小顶堆的堆顶
            return self.min_h[0] / 1.
            
        
 
 
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值