转载自 http://blog.sciencenet.cn/blog-730995-578502.html
人脸识别中的八大难题,何时能解
最近在看人脸识别相关文献,根据文献总结归纳以下八大难点,我从难到易进行罗列。
其实,人脸识别算法研究已久,在背景简单的情形下,大部分算法都能很好的处理。但是,人脸识别的应用范围颇广,仅是简单图像测试,是远远不能满足现实需求的。而能否应对复杂情形下的图像,则成了检验各家方法的硬标准。
以下罗列该八个难点(参考了中科大庄连生博士论文--复杂光照条件下人脸识别关键算法研究):
一,光照问题
光照问题是机器视觉重的老问题,在人脸识别中的表现尤为明显。目前方法未能达到使用的程度。
如何克服光照的影响?
二,姿态问题
与光照问题类似,姿态问题也是目前人脸识别研究中需要解决的一个技术难点。针对姿态的研究相对比较的少,目前多数的人脸识别算法主要针列正面、准正而人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。
哭,笑,愤怒、仰头、低头,左侧脸,右侧脸,如何识别?
三,遮挡问题
对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题。特别是在监控环境下,往往彼监控对象都会带着眼镜,帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸检测算法的失效。
眼睛,帽子、刘海,伤疤,如何识别?
四,年龄变化
随着年龄的变化,面部外观也在变化,特别是对于青少年,这种变化更加的明显。对于不同的年龄段,人脸识别算法的识别率也不同。
不同时期的人脸像如何识别?少年、中年、老年。
五,图像质量
人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不一样,特别是对于那些低分辨率、噪声大、质量差的人脸图像(如手机摄像头拍摄的人脸图片、远程监控拍摄的图片等)如何进行有效地人脸识别是个需要关注的问题。同样的,对于高分辨图像对人脸识别算法的影响也需要进一步的研究。
摄像头,摄像机,远程监控,高端相机。。。。如何识别?图像质量参差不齐。
六,样本缺乏
基于统计学习的人脸识别算法是目前人脸识别领域中的主流算法,但是统计学习方法需要大量的训练。由于人脸图像在高维空间中的分布是一个不规则的流形分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。
学习样本不全怎么办,谁能保证样本的完备性?
七,海量数据
传统人脸识别方法如PCA、LDA等在小规模数据中可以很容易进行训练学习。但是对于海量数据,这些方法其训练过程难以进行,甚至有可能崩溃。
如何解决海量数据的学习问题?
八,大规模人脸识别
随着人脸数据库规模的增长,人脸算法的性能将呈现下降。
如何维持或提高大规模应用环境下的人脸识别算法的识别率?
我是悲观态度持有者,特别是前四个难点。我将关注其发展动态,恕我孤陋寡闻,也许已经有了很好的解决。
1) 对于光照,人都未必能在黑灯瞎火下正确识别出一个人,又怎能要求电脑能智能判断出黑乎乎照片上有什么人脸图像呢。
2) 对于姿态,我想大家都有背后喊人,却发现喊错的情形吧,且绝对不只是一次。
3) 我不相信带着面具,还能被轻而易举认出来,我们即使能判断出也因为别的因素,比如声音,头发,味道,衣服,姿势等。
4) 年龄变化更是,我甚至认为这是暂时不可解的问题。我们能确切知道一个人一生外貌形态的变化吗?有着规定的可以描述的规律吗?能被计算机学习吗?