[网络安全自学篇] 二十三.基于机器学习的恶意请求识别及安全领域中的机器学习

本文是网络安全自学教程的一部分,介绍了机器学习在安全领域的应用,特别是如何使用逻辑回归识别恶意请求。文章详细讲解了从数据集构建、特征工程到模型训练的过程,并给出了代码实现。此外,还讨论了机器学习在安全领域的挑战和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是作者的系列网络安全自学教程,主要是关于网安工具和实践操作的在线笔记,特分享出来与博友共勉,希望您们喜欢,一起进步。前文分享了Web渗透的第一步工作,涉及网站信息、域名信息、端口信息、敏感信息及指纹信息收集。这篇文章换个口味,将分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。

作者作为网络安全的小白,分享一些自学基础教程给大家,希望你们喜欢。同时,更希望你能与我一起操作深入进步,后续也将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不容易,大神请飘过,不喜勿喷,谢谢!

下载地址:https://github.com/eastmountyxz/NetworkSecuritySelf-study
百度网盘:https://pan.baidu.com/s/1dsunH8EmOB_tlHYXXguOeA 提取码:izeb

前文学习:

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值