Deep Learning笔记之一:K-means特征聚类算法

本文介绍了非监督学习中的K-means和模糊C-means聚类算法,探讨了它们的工作原理、特点和应用场景。K-means算法以样本到聚类中心的距离最小化为目标,而模糊C-means则考虑样本对聚类的隶属度,允许样本模糊地属于多个聚类。文章还对比了两者对初始值的敏感性和类内样本的相似度需求。
摘要由CSDN通过智能技术生成

非监督学习:一些聚类算法

     聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术,聚类分析是指事先不了解一批样品中的每个样品的类别或者其他的先验知识,而唯一的分类依据是样品的特征,利用某种相似性度量的方法,把特征相同的或相近的分为一类,实现聚类分析。

下面介绍五种聚类方法,每个算法的使用是有限的,不同的聚类酸腐蚀可以解决不同的问题。

(一)K-means聚类

K均值算法是一种常用的动态聚类算法,K均值算法能够使聚类集中所有样本到聚类中心的距离和最小。原理为:先选K个初始距离中心,计算每个样本到这K个中心的距离,找出最小距离把样本归入最近的聚类中心,然后对中心进行修改,得到新的K个中心,再计算样本到K个中心的距离,重新归类,重新计算中心,修改中心。直到新的聚类中心等于聚类中心则结束。修改聚类中心的准则函数是:


K均值方法的特点:该算法的特点是运算结果受所选的聚类中心的数目,初始位置,模式样本的几何性质以及读入的次序的影响。在实际运用时,要试探选择不同的K值和起始聚类中心。如果模式样本为N个孤立的区域分布,则一般都能得到收敛结果。

 

(二)Kmedoid方法

Kmedoid方法同Kmeans方法类似࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值