模式识别
文章平均质量分 86
托沃斯-勒夫
深度学习,机器学习,计算机视觉,模式识别,智能控制,算法分析,图像处理
展开
-
欧拉角
欧拉角:用来确定定点转动刚体位置的3个一组独立角参量,由章动角θ、旋进角(即进动角)ψ和自转角j组成,为欧拉首先提出而得名。原创 2017-07-11 15:55:34 · 1660 阅读 · 0 评论 -
图像特征有:颜色特征、纹理特征、形状特征、空间关系
常用的图像特征有:颜色特征、纹理特征、形状特征、空间关系特征。原创 2015-07-04 10:06:30 · 16887 阅读 · 0 评论 -
opencv提取图像边缘特征sobel算子的运用
计算机视觉领域的一种重要处理方法。主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算子,将会产生该点对应的梯度矢量或是其法矢量原创 2015-06-06 15:01:59 · 9324 阅读 · 0 评论 -
opencv利用cvCalcHist获得手的肤色直方图的比较汇总
作为直方图比较的测试,我们利用手掌的一部分(即室内环境下手掌的上半部分),分别将该图像中色彩的直方图与该图像区域部分的直方图以及其他两幅手部图像中直方图进行对比。新鲜肤色通常比较容易在HSV色彩空间中提取。这提示我们在色调和饱和度通道中的限制不仅足够,而且有助于识别人的新鲜肤色。原创 2015-06-11 09:52:15 · 2603 阅读 · 0 评论 -
A*寻路算法-曼哈顿距离
前一些天,在群有人问到A*算法的问题。之前我已经有实现过,并将之放到github上(https://github.com/XJM2013/A_Star);有兴趣的可以下载下来看看。这里上传了一个相当好的A*算法演示程序,大家可以下载下来看看效果:http://download.csdn.net/detail/a374826954/8781185。下面描述是摘自清华大学出版社《人工智转载 2015-06-08 12:13:12 · 3510 阅读 · 0 评论 -
opencv的susan角点检测算法
目前的角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。对灰度图像、二值图像、边缘轮廓曲线的角点检测算法进行综述,分析了相关的算法,并对各种检测算法给出了评价。角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于 轮廓 曲线的角点检测。基于灰度图像的角点检测又原创 2015-06-27 15:54:58 · 11481 阅读 · 0 评论 -
Harris角点检测算法优化
在介绍方法之前,我们先提出如下概念:图像区域像素的相似度。我们知道, Harris角点检测是基于图像像素灰度值变化梯度的, 灰度值图像的角点附近,是其像素灰度值变化非常大的区域,其梯度也非常大。换句话说,在非角点位置邻域里,各点的像素值变化不大,甚至几乎相等,其梯度相对也比较小。从这个角度着眼,于是提出了图像区域像素的相似度的概念,它是指检测窗口中心点灰度值与其周围n 邻域内其他像素点灰度值的相似程度,这种相似程度是用其灰度值之差来描述的。原创 2015-06-28 16:56:07 · 3143 阅读 · 0 评论 -
opencv透视变换GetPerspectiveTransform的总结
对于透视变换,必须为map_matrix分配一个3x3数组,除了3x3矩阵和三个控点变为四个控点外,透视变化在其他方面与仿射变换完全类似。主要用到两个函数WarpPerspective和GetPerspectiveTransform。原创 2015-06-08 18:43:35 · 37319 阅读 · 1 评论 -
图像处理特征不变算子系列之Moravec算子
本文是转载,出自:http://blog.csdn.net/kezunhai 1977年,Moravec提出了兴趣点(Points ofInterests)的概念,并应用于解决Stanford Cart的导航问题。1981年, Moravec在International Joint Conference on ArtificialIntelligence发表了篇题为:Obsta转载 2015-06-28 12:45:17 · 2010 阅读 · 0 评论 -
图像模式识别的方法
图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或原创 2015-07-05 11:53:22 · 31760 阅读 · 0 评论 -
深度学习在图像识别中的发展进程与展望
本文是转载,出自:http://blog.csdn.net/linj_m/article/details/46351053点击打开链接深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。1. 深度学习发展历转载 2015-07-12 21:49:29 · 16607 阅读 · 0 评论 -
基于SVM和神经网络的车牌识别
本文将介绍创建自动车牌识别(Automatic Number Plate Recognition, ANPR)所需的步骤。对于不同的情形,实现自动车牌识别会用不同的方法和技术,例如,IR摄像机、固定汽车位置、光照条件等。本文着手构造一个用来检测汽车车牌ANPR的应用,该应用处理的图像使从汽车2-3米处拍摄的,拍摄环境的光线昏暗模糊,并且与地面不平行、车牌在图像中有轻微的扭曲。原创 2015-07-06 09:53:35 · 5881 阅读 · 0 评论 -
卡尔曼滤波
卡尔曼滤波转载 2017-01-06 16:44:40 · 25861 阅读 · 1 评论 -
卡尔曼滤波
卡尔曼滤波转载 2017-01-06 15:39:52 · 592 阅读 · 0 评论 -
高精度标定和效验三维相位轮廓测量系统
高精度标定和效验三维相位轮廓测量系统转载 2015-11-20 13:05:51 · 3446 阅读 · 0 评论 -
模式识别算法-支持向量机SVM 3
模式识别算法-支持向量机SVM 3,接2原创 2015-07-04 11:57:42 · 2066 阅读 · 0 评论 -
模式识别算法-支持向量机SVM 2
模式识别算法-支持向量机SVM 2原创 2015-07-02 10:34:09 · 5150 阅读 · 0 评论 -
模式识别算法:SVM支持向量机
模式识别算法:SVM支持向量机原创 2015-07-01 16:38:47 · 5840 阅读 · 0 评论 -
opencv序列结构CvSeq和轮廓提取cvFindContours的简单运用
我们检测出输入图像的轮廓,然后逐个绘制每个轮廓。从这个例子中,我们可以了解到轮廓测量的方法(如代码中是CV_RETR_LIST)以及max_depth(代码中是0)等参数的细节。如果设置的max_depth是一个比较大的值,你会发现cvFindContours返回的轮廓是通过h_next连接被遍历。对于其他一些拓扑结构(CV_RETR_TREE,CV_RETR_CCOMP等),你会发现有些轮廓被画过不止一次。原创 2015-06-13 22:21:44 · 4110 阅读 · 1 评论 -
BF 算法(Brute Force)
BF(Brute Force)算法是普通的模式匹配算法。原创 2015-09-07 19:52:12 · 808 阅读 · 0 评论 -
opencv笛卡尔坐标转换为极坐标cvLogPolar的应用
cvLogPolar:把图像映射到极指数空间void cvLogPolar( const CvArr* src, CvArr* dst, CvPoint2D32f center, double M, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS ); src 输入图像。 dst 输出 图像。 center 变换的中心原创 2015-06-07 09:04:49 · 5236 阅读 · 0 评论 -
opencv拉普拉斯边缘锐化cvLaplace算法的运用
Laplacian 算子是n维欧几里得空间中的一个二阶微分算子,定义为梯度grad()的散度div()。因此如果f是二阶可微的实函数对于阶跃状边缘,魂不附体导数在边缘点出现零交叉,即边缘点两旁二阶导数取异号。据此,对数字图像{f(i,j)}的每个像素,取它关于x轴方向和y轴方向的二阶差分之和。函数的拉普拉斯算子也是该函数的黑塞矩阵的迹,可以证明,它具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。void cvLaplace( const CvArr* src, CvA原创 2015-06-06 16:57:48 · 6489 阅读 · 0 评论 -
线性判别分析LDA详解
1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等。虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合。2 二分类问题 原理小结:对于二转载 2015-06-17 11:16:17 · 7847 阅读 · 0 评论 -
opencv自适应阀值cvAdaptiveThreshold的应用
Threshold:对数组元素进行固定阈值操作。通常希望对图像中的像素做出最后的决策,或直接剔除一些低于或高于一定值的像素。基本思想是:给定一个数组和一个阀值,然后根据数组中的每个元素的值是低于还是高于阀值而进行一些处理。cvAdaptiveThreshold:自适应阀值,改进了的阀值技术,其中阀值本身是一个变量。有两种自适应方法,通过参数adaptive_method设置。在这两种情况下,自适应阀值T(x,y)在每个像素点都不相同。通过计算像素点周围的bxb区域的加权平均,然后减去一个常数来得到自适应阀值原创 2015-06-09 10:34:28 · 851 阅读 · 0 评论 -
opencv直方图创建CreateHist、计算cvCalcHist和访问的汇总
直方图广泛应用于很多计算机视觉应用中。通过标记帧与帧之间显著的边缘和颜色的统计变化,直方图被用来检测视频中场景的变换。通过为每个兴趣点设置一个有相近特征的直方图所构成的“标签”,用以确定图像中的兴趣点。边缘、色彩、角等直方图构成了可以被传递给目标识别分类器的一个通用特征类型。色彩和边缘的直方图序列还可以用来识别网络视频是否被复制等。直方图是计算机视觉中最经典的工具之一。原创 2015-06-10 19:27:29 · 4201 阅读 · 0 评论 -
opencv漫水填充肤色掩码进行颜色识别cvCalcBackProgect
我们可以用函数cvCalcBackProject计算一个像素是否是一个已知目标的一部分,也可以用函数cvCalcBackProjectPatch计算一块区域是否包含已知的目标。函数cvCalcBackProjectPatch在整个输入图像使用一个滑动窗口。在输入图像矩阵的每一个位置,块中所有的像素点都被设置为在目标图像中对应的块中心位置的像素点。这一点非常重要,因为图像的许多特性(如纹理)在单一的像素级别上无法确定,但可以从一组像素确定。cvCalcBackProjectPatch有两种用法:但采样窗口小于原创 2015-06-12 20:04:03 · 1925 阅读 · 0 评论 -
机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料原文链接:https://github.com/ty4z2008/Qix/blob/master/dl.md希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《Brief History of Machi转载 2015-05-28 17:13:03 · 1614 阅读 · 0 评论 -
opencv关于分水岭算法cvWatershed的运用
分水岭的计算过程是一个迭代标注过程。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。原创 2015-05-28 22:46:16 · 4360 阅读 · 0 评论 -
Eigenface算法,PCA数学理论,协方差
主要是关于pca算法的说明,和把pca算法应用到人脸识别上来的过程原创 2015-05-30 09:56:32 · 4467 阅读 · 0 评论 -
Deep Learning笔记之一:K-means特征聚类算法
聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术,聚类分析是指事先不了解一批样品中的每个样品的类别或者其他的先验知识,而唯一的分类依据是样品的特征,利用某种相似性度量的方法,把特征相同的或相近的分为一类,实现聚类分析。原创 2015-06-03 15:01:43 · 16286 阅读 · 0 评论 -
opencv卷积cvFileter2D与卷积边界cvCopyMakeBorder处理图像的总结
连续空间的卷积定义是 f(x)与g(x)的卷积是 f(t-x)g(x) 在t从负无穷到正无穷的积分值。t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围的。实际的过程就是f(x)先做一个Y轴的反转,然后再沿X轴平移t就是f(t-x),然后再把g(x)拿来,两者乘积的值再积分.想象一下如果g(x)或者f(x)是个单位的阶越函数。那么就是f(t-x)与g(x)相交部分的面积。这就是卷积了。把积分符号换成求和就是离散空间的卷积定义了。原创 2015-06-06 10:31:22 · 1602 阅读 · 0 评论 -
opencv用金字塔cvPyrSegmentation实现图像分割
用金字塔实现图像分割。图像分割需要先建立一个图像金字塔,然后在Gi的像素和Gi+1的像素直接依照对应关系,建立起"父-子"关系,通过这种方式,快速初始分割可以先在金字塔高层的低分辨率图像上完成,然后逐层对分割加以优化。要从金字塔第i层生成第i+1层(我们表示第i+1层为G+i),我们先要要高斯核对Gi进行卷积,然后删除所有偶数行和偶数列。当然,新得到的图像面积会变为源图像的四分之一。按上述过程对输入图像G0循环执行操作就可产生整个金字塔。原创 2015-06-05 20:43:28 · 3215 阅读 · 1 评论 -
关于高斯模糊平滑滤波器的参数探讨的汇总
Gaussian filter(CV_GAUSSIAN),虽然它不是最快的,但是它是最有用的滤波器。高斯滤波用卷积核与输入图像的每个点进行卷积,将最终计算结果之和作为输出图像的像素值。高斯滤波的opencv的实现还为几个常见的核提供更高的性能优化。具有标准sigma值的3*3,5*5,和7*7比其他核具有更优的性能。高斯模糊支持单个通道或者三个通道的8位或32位的浮点格式图像,可以进行in place方式操作。原创 2015-06-05 18:59:37 · 3694 阅读 · 0 评论 -
opencv图像平滑滤波处理cvSmooth的汇总
函数 cvSmooth 可使用简单模糊、简单无缩放变换的模糊、中值模糊、高斯模糊、双边滤波的任何一种方法平滑图像。每一种方法都有自己的特点以及局限。中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的值,从而消除孤立的噪声点。高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,我们知道数字图像用于后期应用,其噪声是最大的问题。原创 2015-06-05 10:29:13 · 2904 阅读 · 0 评论 -
opencv各种滤波分析bilateralFilter、Laplacian、bitwise_and和GaussianBlur
这个程序运用了很多边缘检测算法,包括bilateralFilter、Laplacian、bitwise_and和GaussianBlur。各种算法在图像滤波分析中有各自的特点。这个实验对人物漫画写作有重要意义。原创 2015-06-25 10:39:47 · 4075 阅读 · 0 评论 -
RGB颜色模型和HSV颜色模型及其应用的汇总
在图像处理中,最常用的颜色空间是RGB模型,常用于颜色显示和图像处理,三维坐标的模型形式,非常容易被理解。而HSV模型,是针对用户观感的一种颜色模型,侧重于色彩表示,什么颜色、深浅如何、明暗如何。。。配上一个程序,这个程序主要是通过鼠标按键画一个矩形框,然后当松手时,在原图上形成一个高亮框。高亮框用以突出图像的某一部分,以便针对处理该区域。这个实验对人工界面的智能操作和模式识别具有重要的意义。原创 2015-06-05 09:06:27 · 24565 阅读 · 0 评论 -
Deep Learning论文笔记之(一)K-means特征学习
Deep Learning论文笔记之(一)K-means特征学习 转载出处:点击打开链接 本文的论文来自:Learning Feature Representations with K-means, Adam Coates and Andrew Y. Ng. In Neural Networks: Tricks of the Trade, Reloaded,转载 2015-06-03 19:42:29 · 972 阅读 · 0 评论 -
opencv播放视频实时显示帧速(FPS),即是每秒帧数
这段程序可以大致测试出视频处理算法的时间消耗。主要过程是使用以上两个主要函数得到每帧之间的时间,再用putText把FPS的数值显示到屏幕上。原创 2015-05-30 11:11:41 · 37643 阅读 · 3 评论 -
推荐算法
一.推荐系统的主要算法[1] 按照使用数据分: 1.协同过滤:User-based协同过滤;Item-based协同过滤;基于模型的协同过滤 2.基于内容的推荐:用户内容属性和物品内容属性 3.社会化过滤:用户之间的社会网络关系 按照模型分: 1.最近邻模型:基于用户/物品的协同过转载 2015-06-17 10:36:01 · 3027 阅读 · 0 评论