静电场-2


电场线:用于形象描述电场在空间的分布情况

电场线有如下性质:
1.电场线起自正电荷(或来自无穷远),终止于负电荷(或伸向无限远),在无电荷的地方不会中断
2.任意两条电场线不相交,即静电场中每一点的场强只有一个方向
3.电场线不形成闭合回线
4.电场强处电场线密集,电场弱处电场线稀疏


电通量:穿过电场中任意给定面的电场线条数称为通过该面的电场强度通量

均匀电场中,穿过垂直于电场方向的任意平面S的电通量为φ=ES,若与场强成θ角,则φ=EScosθ

如果是曲面,则通过dS的电通量为:dφ=EdScosθ=E·dS
通过整个曲面S的电通量为φ=∫s(dφ)=∫s(E·dS)

如果是闭合曲面,则规定由内向外的方向为个面积元法矢en的正方向


高斯定理:静电场的高斯定理表述为:真空中任何静电场中,穿过任一闭合曲面的电通量等于该闭合曲面包围电荷代数和的ε0分之一,即
φ=∫s(E·dS)=(1/ε0)∑qi

对高斯定理的理解应注意:
1.高斯定理表达式作坊的场强E是闭合面上dS处的场强,它是由闭合面内外全部电荷共同产生的,即闭合面外的电荷对空间各点的E有贡献,要影响闭合面上各面元的通量dφ
2.通过闭合曲面的总电通量只决定于闭合面内所包围的电荷,闭合曲面外部的电荷对闭合面的总电通量∫E·dS无贡献.


更多查看我的博客:https://beatjerome.github.io

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值