经典算法——求绝对值溢出问题

Problem Description
求实数的绝对值。
Input
输入数据有多组,每组占一行,每行包含一个实数。
Output
对于每组输入数据,输出它的绝对值,要求每组数据输出一行,结果保留两位小数。
Sample Input
123
-234.00
Sample Output
123.00
234.00

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;

int main()
{
	float x;
	float res;

	while (cin >> x)
	{
		res = x>=0 ? x : -1 * x;
		printf("%.2f\n",res);
	}
	return 0;
}

将x,res由float类型改为double类型就行:

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;

int main()
{
	double x;
	double res;

	while (cin >> x)
	{
		res = x>=0 ? x : -1 * x;
		printf("%.2f\n",res);
	}
	return 0;
}









### 有符号二进制加法溢出检测 对于两个8位有符号二进制数 `11000000` 和 `11000000` 的加法运算,可以通过分析最高有效位(即符号位)来判断是否存在溢出。 #### 符号位与数值范围 在8位有符号二进制表示中,最左边的一位是符号位。当该位置为0时表示正数;置为1时表示负数。因此,在这种情况下: - `11000000` 表示的是 `-64` 而不是 `192`,因为在补码形式下它代表最小的可表达负值之一[^1]。 执行加法操作如下所示: ```python a = int('11000000', 2) # -64 in decimal, using two's complement representation b = int('11000000', 2) # -64 in decimal, using two's complement representation result = a + b # Result should be calculated based on signed arithmetic rules. print(bin(result & ((1 << 8) - 1))) ``` 这段Python代码展示了如何处理带符号的8位二进制数相加并截断至8位的结果。这里使用了按位与(`&`)操作符配合掩码`(1<<8)-1`以确保结果保持在一个字节内。 #### 检测溢出条件 为了确定是否发生了溢出,可以考虑以下几个标准: - 如果两个同号的操作数(都是正值或都是负值),而它们相加后的结果却改变了符号,则说明出现了溢出; - 对于上述特定情况中的两个相同的负数相加,理论上应该得到更小(绝对值更大)的负数作为结果。然而由于有限长度的原因,实际计算出来的可能是超出预期范围的一个较大正数或者另一个不合理的负数,这同样表明存在溢出现象[^2]。 在这个具体的例子中,`11000000 (-64)` 加上 `11000000 (-64)` 应该等于 `-128` (`10000000`) ,但是如果我们只保留最低八位的话就会发现最终结果变成了零而不是期望中的 `-128` 。这是因为我们使用的数据类型无法容纳这个新的更大的负数值,从而导致了一个错误的状态——这就是所谓的“自然丢弃”,意味着高位被简单地舍去了。 综上所述,给定条件下确实会发生溢出,并且如果严格按照8位存储空间的要来看待这个问题,那么正确答案应当被认为是不可用或者是不确定的,除非采用某种方式扩展存储容量或是调整算法逻辑以便能够妥善处理这种情况下的异常情形。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值