基于大模型的论文重写和扩写工具

本文探讨了如何利用GPT-4和ChatGPT进行学术论文的润色,重点关注标题优化和语言改进。GPT-4在语法和风格调整上表现出色,而ChatGPT提供了更便捷的接入方式。文章强调了保护个人信息的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

Rewriter

核心提示词

### Task Background
I am preparing my {cj} paper for submission and require assistance in polishing each paragraph.
You are now acting as a/an {name} in the field of {field} for {cj}.
When I give you an academic paper on {topic}.
From a professional point of view, please polish the writing to meet the academic style, improve the spelling, grammar, clarity, concision and overall readability.
Be careful not to modify the full text or add any new content, just modify the original sentence.
Please take a global perspective after understanding the whole paper.
For each paragraph we need to improve, you need to put all modified sentences in a Markdown table, each column contains the following:
    1. Original Sentence: Full original sentence;
    2. Reasons: Explain why made these changes(highlight the revised part of this sentence and express in {language});
    3. Rewrited Sentence: Finally, Rewrite the full corrected sentence.


### Paper
{paper}


OK, let's start by touching up the Title and Abstract of the paper and think step by step.

### Response

译文

###任务背景

我正在准备提交我的{cj}论文,每一段都需要你帮助润色一下。

您现在是{会议/期刊}的{某个领域}下的一位 { 学术论文润色专家 }。

当我给你一篇关于 { 关于某个主题 } 的学术论文时。

从专业的角度来看,请润色文字以符合学术风格,提高拼写、语法、清晰度、简洁性和整体可读性。

注意不要修改全文或添加任何新内容,只需修改原句即可。

请在理解整篇论文后,从全篇的角度来看待问题。

对于我们需要润色的每一段,您需要将所有修改后的句子放在 Markdown 表中,每一次润色都应该包含以下内容:

1.原句:完整的原句;

2.原因:解释为什么做出这些改变(突出这句话的修改的那部分,并用 { 某种语言 } 表述);

3.重写句子:最后润色的完整的更正后的句子。

### 论文

{论文全文}


好的,让我们一步步思考,从修改标题和摘要开始润色。

### 回复

使用方法

配置环境

pip3 install -r requirements.txt

终端

编辑下配置信息 config.ini

name --机器人角色或名字
cj --目标会议或期刊
field --研究领域
topic --研究主题
paper --论文全文文件地址
language --修改理由的语言

运行

python cli.py

网页

python app.py

在这里插入图片描述

效果

让我们用 GPT-4 润色一下 GPT-4 Technical Report,看看蛇头咬住蛇身会产生什么有趣的润色意见?

GPT-4

The post-training alignment process yields “measures offactuality”中间缺少空格,所以“offactuality”改为"off actuality”。

GPT-4 Technical Report 语法上应该是没有问题的,可以看到 GPT-4 润色时一些小小的空格错误都被他发现了。此外,即使没有语法错误,GPT-4 也能够根据你的设置提供一些写作风格偏好的修改意见,非常强大。

GPT-4 的效果比 ChatGPT 好,我们的 GPT4_requests 方法不公开,你需要在src/requests_API.py中自己实现接口。然后在 app.py 中的 bot 方法中取消注释 response=GPT4_reports(prompt)

在这里插入图片描述

ChatGPT

我们同时支持 ChatGPT,而且配置更为方便,只需要一个可用的 OpenAI Key。
Web 界面默认使用 ChatGPT 接口,并且我们已将应用程序部署到 HuggingFace 空间:

我们已经为 ChatGPT 提供了一个测试 access token。我们不保证此 token 永久有效。你也可以设置自己的 OpenAI 密钥,我们不会记录或保存。

ChatGPT 的效果相比 GPT-4 就逊色的多,不能保证每次都以 MarkDown 的形式返回修改意见,指令遵循能力较差,同样的请求提示词,修改意见也不够详细。

有趣的是,

The paper should use a specific and clear title that represents the content. Rewrited Sentence:Technical Report on GPT-4.

ChatGPT 认为这篇文章的标题起得不好,他认为应该使用一个更具体和明确的标题来表达文章内容,还贴心的起了个新的标题:Technical Report on GPT-4,而多次实验发现 GPT-4 绝大多次的修改意见都认为文章的标题很好无需修改,果然是 OpenAI 的"亲儿子"。

在这里插入图片描述

最后,您可以点击下载按钮,将所有修改建议和润色内容保存到本地。

TODO

  • 丰富润色模板
  • 追加扩写模板
  • pdf 论文格式文件读取

声明

ChatGPT 和 GPT-4 给我们带来方便的同时也需要警惕个人敏感信息的泄露。我们声明在使用我们的 GitHub 仓库创建的应用程序的过程中,如果出现论文信息等安全隐私泄露问题,我们不对此负责。

为了分析一个模型的预测精度泛化能力,通常需要对一个机器学习或深度学习模型的训练过程评估步骤进行详细操作。以下是一个简单的Python代码片段,展示了如何使用sklearn库中的线性回归模型作为例子: ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # 假设我们有一个数据集X (特征) y (标签) X = ... # 输入特征数据 y = ... # 目标变量 # 数据分割(70%训练,30%测试) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建并训练模型 model = LinearRegression() model.fit(X_train, y_train) # 预测 y_pred_train = model.predict(X_train) y_pred_test = model.predict(X_test) # 计算预测精度指标 mse_train = mean_squared_error(y_train, y_pred_train) mse_test = mean_squared_error(y_test, y_pred_test) r2_train = r2_score(y_train, y_pred_train) r2_test = r2_score(y_test, y_pred_test) print(f"训练集上的MSE: {mse_train}, R²: {r2_train}") print(f"测试集上的MSE: {mse_test}, R²: {r2_test}") # 分析预测精度泛化能力 # - 如果训练集测试集的MSE相近,说明模型没有过拟合(泛化能力强) # - 如果训练集R²接近1而测试集R²较低,可能存在过拟合 # - 可以通过调整模型复杂度、增加正则化等方式提高泛化能力 # 泛化能力相关问题-- 1. 怎样通过交叉验证来评估模型的泛化性能? 2. 如何处理过拟合现象以提升模型泛化能力? 3. 使用哪些技术可以增强模型的泛化能力? ``` 在这个例子中,我们首先分割数据,然后训练模型,最后通过计算训练集测试集的误差指标来判断模型的精度。良好的预测精度意味着模型能准确地预测训练数据,而好的泛化能力意味着它能在未知的新数据上同样表现良好。如果模型在训练集上表现优秀但在测试集上表现差,则可能存在过拟合的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

geeksoarsky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值