01背包问题

样题: 

朴素方法的分析(暴力)

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;
int f[N][N],w[N],v[N];

int main() {
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int n,V; cin >> n >> V;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 0; j <= V; j++){
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout << f[n][V];
    return 0;
}

 如何优化成一维?

为什么可以这样优化成一维的呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

(1)状态f[j]定义:N 件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从V开始。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

在正序情况下

f[j] = max(f[j],f[j - v[i]] + w[i]);

f[j - v[i]]对应到二维相当于

f[i][j] = max(f[i][j],f[i][j - v[i]] + w[i]);

由于二维变为一维的时候f[ i ][ j ]  =  f[ i - 1 ][ j ] ;

就相当于

f[j] = f[j];

这个时候也就说明在一维的f[j]不是第f[ i - 1 ][ j ]而是f[ i ][ j ],所以我们需要逆序

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;
int f[N],w[N],v[N];

int main() {
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int n,V; cin >> n >> V;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = V; j >= v[i]; j--){
            f[j] = f[j];//可删除
            //f[i][j] = f[i - 1][j];
            if(j >= v[i]) {
                f[j] = max(f[j],f[j - v[i]] + w[i]);
                //f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
            }
        }
    }
    cout << f[V];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值