样题:
朴素方法的分析(暴力)
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int f[N][N],w[N],v[N];
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n,V; cin >> n >> V;
for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for(int i = 1; i <= n; i++){
for(int j = 0; j <= V; j++){
f[i][j] = f[i - 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][V];
return 0;
}
如何优化成一维?
为什么可以这样优化成一维的呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。
(1)状态f[j]定义:N 件物品,背包容量j下的最优解。
(2)注意枚举背包容量j必须从V开始。
(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。
在正序情况下
f[j] = max(f[j],f[j - v[i]] + w[i]);
f[j - v[i]]对应到二维相当于
f[i][j] = max(f[i][j],f[i][j - v[i]] + w[i]);
由于二维变为一维的时候f[ i ][ j ] = f[ i - 1 ][ j ] ;
就相当于
f[j] = f[j];
这个时候也就说明在一维的f[j]不是第f[ i - 1 ][ j ]而是f[ i ][ j ],所以我们需要逆序
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int f[N],w[N],v[N];
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n,V; cin >> n >> V;
for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for(int i = 1; i <= n; i++){
for(int j = V; j >= v[i]; j--){
f[j] = f[j];//可删除
//f[i][j] = f[i - 1][j];
if(j >= v[i]) {
f[j] = max(f[j],f[j - v[i]] + w[i]);
//f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
}
}
}
cout << f[V];
return 0;
}