深度学习 第四讲

1.梯度下降:

等同于批梯度下降。

对于目标函数:

如果对于这个目标函数:求,

随机梯度下降:

由于J 是N 个函数的组合,所以我们可以把他们分成M 个部分(最多N 个部分),假如是N个部分,也就是一个元素一部分。

对于一组固定的,我们就得到

然后可以求出一组,,对于第二个元素,我们用新得到的,来作为初始值,再求梯度下降

对于第三个元素,利用第二个得到的,作为初始值,进行计算。

2.随机梯度下降的问题:SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

每次不一定都是下降方向?

参考博文:http://blog.csdn.net/lilyth_lilyth/article/details/8973972

梯度下降 求下降方向的时候需要求导。

在求步长的时候,需要求hessian 阵,需要求二阶导数?

 t=(-d)'*d/((-d)'*Q*d);%求搜索步长 

 fx1=diff(f,'x1'); %对x1求偏导数
 fx2=diff(f,'x2'); %对x2求偏导数

对于每一个函数,比如J,



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值